TU Darmstadt / ULB / TUbiblio

A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws

Frenzel, David ; Lang, Jens (2024)
A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws.
In: Computational Optimization and Applications, 2021, 80 (1)
doi: 10.26083/tuprints-00023518
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The weighted essentially non-oscillatory (WENO) methods are popular and effective spatial discretization methods for nonlinear hyperbolic partial differential equations. Although these methods are formally first-order accurate when a shock is present, they still have uniform high-order accuracy right up to the shock location. In this paper, we propose a novel third-order numerical method for solving optimal control problems subject to scalar nonlinear hyperbolic conservation laws. It is based on the first-disretize-then-optimize approach and combines a discrete adjoint WENO scheme of third order with the classical strong stability preserving three-stage third-order Runge–Kutta method SSPRK3. We analyze its approximation properties and apply it to optimal control problems of tracking-type with non-smooth target states. Comparisons to common first-order methods such as the Lax–Friedrichs and Engquist–Osher method show its great potential to achieve a higher accuracy along with good resolution around discontinuities.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Frenzel, David ; Lang, Jens
Art des Eintrags: Zweitveröffentlichung
Titel: A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws
Sprache: Englisch
Publikationsjahr: 10 Dezember 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2021
Ort der Erstveröffentlichung: New York
Verlag: Springer Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Computational Optimization and Applications
Jahrgang/Volume einer Zeitschrift: 80
(Heft-)Nummer: 1
DOI: 10.26083/tuprints-00023518
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23518
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The weighted essentially non-oscillatory (WENO) methods are popular and effective spatial discretization methods for nonlinear hyperbolic partial differential equations. Although these methods are formally first-order accurate when a shock is present, they still have uniform high-order accuracy right up to the shock location. In this paper, we propose a novel third-order numerical method for solving optimal control problems subject to scalar nonlinear hyperbolic conservation laws. It is based on the first-disretize-then-optimize approach and combines a discrete adjoint WENO scheme of third order with the classical strong stability preserving three-stage third-order Runge–Kutta method SSPRK3. We analyze its approximation properties and apply it to optimal control problems of tracking-type with non-smooth target states. Comparisons to common first-order methods such as the Lax–Friedrichs and Engquist–Osher method show its great potential to achieve a higher accuracy along with good resolution around discontinuities.

Freie Schlagworte: Nonlinear optimal control, Discrete adjoints, Hyperbolic conservation laws, WENO schemes, Strong stability preserving Runge–Kutta methods
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-235183
Zusätzliche Informationen:

Mathematics Subject Classifcation 34H05 · 49M25 · 65L06 · 65M22

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 04 Fachbereich Mathematik
04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen
Hinterlegungsdatum: 10 Dez 2024 12:53
Letzte Änderung: 17 Dez 2024 11:59
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen