TU Darmstadt / ULB / TUbiblio

Humidity influence on mechanics of paper materials: joint numerical and experimental study on fiber and fiber network scale

Lin, Binbin ; Auernhammer, Julia ; Schäfer, Jan-Lukas ; Meckel, Tobias ; Stark, Robert ; Biesalski, Markus ; Xu, Bai-Xiang (2024)
Humidity influence on mechanics of paper materials: joint numerical and experimental study on fiber and fiber network scale.
In: Cellulose, 2022, 29 (2)
doi: 10.26083/tuprints-00023521
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Paper materials are well-known to be hydrophilic unless chemical and mechanical processing treatments are undertaken. The relative humidity impacts the fiber elasticity, the interfiber joint behavior and the failure mechanism. In this work, we present a comprehensive experimental and computational study on mechanical properties of the fiber and the fiber network under humidity influence. The manually extracted cellulose fiber is exposed to different levels of humidity, and then mechanically characterized using atomic force microscopy, which delivers the humidity dependent longitudinal Young’s modulus. We describe the relation and calibrate the data into an exponential function, and the obtained relationship allows calculation of fiber elastic modulus at any humidity level. Moreover, by using confoncal laser scanning microscopy, the coefficient of hygroscopic expansion of the fibers is determined. We further present a finite element model to simulate the deformation and the failure of the fiber network. The model includes the fiber anisotropy and the hygroscopic expansion using the experimentally determined constants, and further considers interfiber behavior and debonding by using a humidity dependent cohesive zone interface model. Simulations on exemplary fiber network samples are performed to demonstrate the influence of different aspects including relative humidity and fiber-fiber bonding parameters on the mechanical features, such as force-elongation curve, strength and extensibility. Finally, we provide computational insights for interfiber bond damage pattern with respect to different humidity level as further outlook.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Lin, Binbin ; Auernhammer, Julia ; Schäfer, Jan-Lukas ; Meckel, Tobias ; Stark, Robert ; Biesalski, Markus ; Xu, Bai-Xiang
Art des Eintrags: Zweitveröffentlichung
Titel: Humidity influence on mechanics of paper materials: joint numerical and experimental study on fiber and fiber network scale
Sprache: Englisch
Publikationsjahr: 10 Dezember 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Januar 2022
Ort der Erstveröffentlichung: Dordrecht
Verlag: Springer Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Cellulose
Jahrgang/Volume einer Zeitschrift: 29
(Heft-)Nummer: 2
DOI: 10.26083/tuprints-00023521
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23521
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Paper materials are well-known to be hydrophilic unless chemical and mechanical processing treatments are undertaken. The relative humidity impacts the fiber elasticity, the interfiber joint behavior and the failure mechanism. In this work, we present a comprehensive experimental and computational study on mechanical properties of the fiber and the fiber network under humidity influence. The manually extracted cellulose fiber is exposed to different levels of humidity, and then mechanically characterized using atomic force microscopy, which delivers the humidity dependent longitudinal Young’s modulus. We describe the relation and calibrate the data into an exponential function, and the obtained relationship allows calculation of fiber elastic modulus at any humidity level. Moreover, by using confoncal laser scanning microscopy, the coefficient of hygroscopic expansion of the fibers is determined. We further present a finite element model to simulate the deformation and the failure of the fiber network. The model includes the fiber anisotropy and the hygroscopic expansion using the experimentally determined constants, and further considers interfiber behavior and debonding by using a humidity dependent cohesive zone interface model. Simulations on exemplary fiber network samples are performed to demonstrate the influence of different aspects including relative humidity and fiber-fiber bonding parameters on the mechanical features, such as force-elongation curve, strength and extensibility. Finally, we provide computational insights for interfiber bond damage pattern with respect to different humidity level as further outlook.

Freie Schlagworte: Paper materials, Fiber network simulation, Humidity influence, Strength of paper
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-235210
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Physics of Surfaces
07 Fachbereich Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie > Makromolekulare Chemie und Papierchemie
Hinterlegungsdatum: 10 Dez 2024 13:05
Letzte Änderung: 11 Dez 2024 07:43
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen