TU Darmstadt / ULB / TUbiblio

Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides

Lin, Ling ; Wang, Kai ; Azmi, Raheleh ; Wang, Junbo ; Sarkar, Abhishek ; Botros, Miriam ; Najib, Saleem ; Cui, Yanyan ; Stenzel, David ; Anitha Sukkurji, Parvathy ; Wang, Qingsong ; Hahn, Horst ; Schweidler, Simon ; Breitung, Ben (2024)
Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides.
In: Journal of Materials Science, 2020, 55 (36)
doi: 10.26083/tuprints-00023938
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

A facile mechanochemical reaction at ambient temperature was successfully applied to synthesize novel single-phase rock-salt-structured high-entropy oxides, containing five, six and seven metal elements in equiatomic amounts. This synthesis approach overcomes the limitations of the commonly known synthesis procedures, which would result in multiple-phase compounds. Redox-sensitive elements, such as Fe²⁺ and Mn²⁺, can now be considered. The corresponding single-phase Li-containing high-entropy oxyfluorides were obtained by introducing LiF into the lattice using the same strategy. All materials show single-phase rock-salt structures with lattice parameters depending on the incorporated ion sizes. Solid solution states result in high configurational entropies, and all elements appear homogenously distributed over the whole cationic and anionic sublattice. The straightforward synthesis technique, combined with utilized simple binary oxide precursors, paves the way for a multitude of novel high-entropy oxide and oxyfluoride compounds. The compounds were studied by means of X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Mössbauer spectroscopy.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Lin, Ling ; Wang, Kai ; Azmi, Raheleh ; Wang, Junbo ; Sarkar, Abhishek ; Botros, Miriam ; Najib, Saleem ; Cui, Yanyan ; Stenzel, David ; Anitha Sukkurji, Parvathy ; Wang, Qingsong ; Hahn, Horst ; Schweidler, Simon ; Breitung, Ben
Art des Eintrags: Zweitveröffentlichung
Titel: Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides
Sprache: Englisch
Publikationsjahr: 10 Dezember 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Dezember 2020
Ort der Erstveröffentlichung: Dordrecht
Verlag: Springer Science
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Materials Science
Jahrgang/Volume einer Zeitschrift: 55
(Heft-)Nummer: 36
DOI: 10.26083/tuprints-00023938
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23938
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

A facile mechanochemical reaction at ambient temperature was successfully applied to synthesize novel single-phase rock-salt-structured high-entropy oxides, containing five, six and seven metal elements in equiatomic amounts. This synthesis approach overcomes the limitations of the commonly known synthesis procedures, which would result in multiple-phase compounds. Redox-sensitive elements, such as Fe²⁺ and Mn²⁺, can now be considered. The corresponding single-phase Li-containing high-entropy oxyfluorides were obtained by introducing LiF into the lattice using the same strategy. All materials show single-phase rock-salt structures with lattice parameters depending on the incorporated ion sizes. Solid solution states result in high configurational entropies, and all elements appear homogenously distributed over the whole cationic and anionic sublattice. The straightforward synthesis technique, combined with utilized simple binary oxide precursors, paves the way for a multitude of novel high-entropy oxide and oxyfluoride compounds. The compounds were studied by means of X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy and Mössbauer spectroscopy.

Freie Schlagworte: Materials Science, general, Characterization and Evaluation of Materials, Polymer Sciences, Solid Mechanics, Crystallography and Scattering Methods, Classical Mechanics
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-239381
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 10 Dez 2024 13:23
Letzte Änderung: 11 Dez 2024 07:18
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen