Carl, K. Valerie ; Arnold, Thomas ; Medzhybovska, Nataliia ; Gurevych, Iryna (2024)
Wie können Corporate-Digital-Responsibility-Aktivitäten gemessen werden? Ein Ansatz mit Hilfe eines automatisierten Tools.
In: Transfer: Zeitschrift für Kommunikation & Markenmanagement, 70 (2)
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
The concept of Corporate Digital Responsibility (CDR) continues to gain importance in research and practice. However, the measurability of CDR engagement has so far been less studied, although such measurability can provide companies with the necessary orientation. As it is hardly possible to measure CDR engagement manually, we present an approach based on Artificial Intelligence (AI), specifically Natural Language Processing. To this end, we developed and verified a corresponding benchmark corpus, trained an AI model, and then evaluated the tool with experts. The developed approach to the measurability of CDR should support the implementation of a CDR strategy in practice and thus contribute to more responsible digitalization overall.
Typ des Eintrags: | Artikel | ||||
---|---|---|---|---|---|
Erschienen: | 2024 | ||||
Autor(en): | Carl, K. Valerie ; Arnold, Thomas ; Medzhybovska, Nataliia ; Gurevych, Iryna | ||||
Art des Eintrags: | Bibliographie | ||||
Titel: | Wie können Corporate-Digital-Responsibility-Aktivitäten gemessen werden? Ein Ansatz mit Hilfe eines automatisierten Tools | ||||
Sprache: | Deutsch | ||||
Publikationsjahr: | Juni 2024 | ||||
Verlag: | New Buisness Verlag | ||||
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Transfer: Zeitschrift für Kommunikation & Markenmanagement | ||||
Jahrgang/Volume einer Zeitschrift: | 70 | ||||
(Heft-)Nummer: | 2 | ||||
URL / URN: | https://www.wiso-net.de/document/TWP__acc0f84892ef12e03beb26... | ||||
Kurzbeschreibung (Abstract): | The concept of Corporate Digital Responsibility (CDR) continues to gain importance in research and practice. However, the measurability of CDR engagement has so far been less studied, although such measurability can provide companies with the necessary orientation. As it is hardly possible to measure CDR engagement manually, we present an approach based on Artificial Intelligence (AI), specifically Natural Language Processing. To this end, we developed and verified a corresponding benchmark corpus, trained an AI model, and then evaluated the tool with experts. The developed approach to the measurability of CDR should support the implementation of a CDR strategy in practice and thus contribute to more responsible digitalization overall. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Zusätzliche Informationen: | ULB-Bestand (E-Joural); Zugang über das Netzwerk der TU möglich (WISO-Datenbank) |
||||
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
||||
Hinterlegungsdatum: | 17 Dez 2024 11:55 | ||||
Letzte Änderung: | 17 Dez 2024 11:55 | ||||
PPN: | |||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |