TU Darmstadt / ULB / TUbiblio

Concept drift monitoring for industrial load forecasting with artificial neural networks

Zink, Robin ; Ioshchikhes, Borys ; Weigold, Matthias (2024)
Concept drift monitoring for industrial load forecasting with artificial neural networks.
In: Procedia CIRP, 130
doi: 10.1016/j.procir.2024.10.065
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Long Short-Term Memory (LSTM) models are frequently applied for industrial energy load forecasting. However, real-world production systems are highly dynamic which poses major challenges. Concept drifts potentially lead to performance degradation that affects systems optimization for the worse. In this work, Concept Drift Detection (CDD) for industrial energy load forecasting with LSTM models is researched. For this purpose, five CDD algorithms are evaluated using the active power of a machine tool. Drift Detection Method (DDM) and Kolmogorov-Smirnov Windowing (KSWIN) proved to be particularly effective with easily interpretable and reasonable hyperparameters.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Zink, Robin ; Ioshchikhes, Borys ; Weigold, Matthias
Art des Eintrags: Bibliographie
Titel: Concept drift monitoring for industrial load forecasting with artificial neural networks
Sprache: Englisch
Publikationsjahr: 2024
Ort: Amsterdam
Verlag: Elsevier B.V.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Procedia CIRP
Jahrgang/Volume einer Zeitschrift: 130
DOI: 10.1016/j.procir.2024.10.065
Kurzbeschreibung (Abstract):

Long Short-Term Memory (LSTM) models are frequently applied for industrial energy load forecasting. However, real-world production systems are highly dynamic which poses major challenges. Concept drifts potentially lead to performance degradation that affects systems optimization for the worse. In this work, Concept Drift Detection (CDD) for industrial energy load forecasting with LSTM models is researched. For this purpose, five CDD algorithms are evaluated using the active power of a machine tool. Drift Detection Method (DDM) and Kolmogorov-Smirnov Windowing (KSWIN) proved to be particularly effective with easily interpretable and reasonable hyperparameters.

Freie Schlagworte: Artificial Intelligence, continual learning, energy, factory, machine learning, manufacturing
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > ETA Energietechnologien und Anwendungen in der Produktion
Hinterlegungsdatum: 29 Nov 2024 08:32
Letzte Änderung: 29 Nov 2024 08:32
PPN: 524286620
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen