TU Darmstadt / ULB / TUbiblio

M2QA: Multi-domain Multilingual Question Answering

Englander, Leon ; Sterz, Hannah ; Poth, Clifton ; Pfeiffer, Jonas ; Kuznetsov, Ilia ; Gurevych, Iryna (2024)
M2QA: Multi-domain Multilingual Question Answering.
29th Conference on Empirical Methods in Natural Language Processing. Miami, USA (12.11.2024 - 16.11.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Generalization and robustness to input variation are core desiderata of machine learning research. Language varies along several axes, most importantly, language instance (e.g. French) and domain (e.g. news). While adapting NLP models to new languages within a single domain, or to new domains within a single language, is widely studied, research in joint adaptation is hampered by the lack of evaluation datasets. This prevents the transfer of NLP systems from well-resourced languages and domains to non-dominant language-domain combinations. To address this gap, we introduce M2QA, a multi-domain multilingual question answering benchmark.M2QA includes 13,500 SQuAD 2.0-style question-answer instances in German, Turkish, and Chinese for the domains of product reviews, news, and creative writing. We use M2QA to explore cross-lingual cross-domain performance of fine-tuned models and state-of-the-art LLMs and investigate modular approaches to domain and language adaptation.We witness **1)** considerable performance _variations_ across domain-language combinations within model classes and **2)** considerable performance _drops_ between source and target language-domain combinations across all model sizes. We demonstrate that M2QA is far from solved, and new methods to effectively transfer both linguistic and domain-specific information are necessary.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Englander, Leon ; Sterz, Hannah ; Poth, Clifton ; Pfeiffer, Jonas ; Kuznetsov, Ilia ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: M2QA: Multi-domain Multilingual Question Answering
Sprache: Englisch
Publikationsjahr: November 2024
Verlag: ACL
Buchtitel: EMNLP 2024: The 2024 Conference on Empirical Methods in Natural Language Processing: Findings of EMNLP 2024
Veranstaltungstitel: 29th Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Miami, USA
Veranstaltungsdatum: 12.11.2024 - 16.11.2024
URL / URN: https://aclanthology.org/2024.findings-emnlp.365/
Kurzbeschreibung (Abstract):

Generalization and robustness to input variation are core desiderata of machine learning research. Language varies along several axes, most importantly, language instance (e.g. French) and domain (e.g. news). While adapting NLP models to new languages within a single domain, or to new domains within a single language, is widely studied, research in joint adaptation is hampered by the lack of evaluation datasets. This prevents the transfer of NLP systems from well-resourced languages and domains to non-dominant language-domain combinations. To address this gap, we introduce M2QA, a multi-domain multilingual question answering benchmark.M2QA includes 13,500 SQuAD 2.0-style question-answer instances in German, Turkish, and Chinese for the domains of product reviews, news, and creative writing. We use M2QA to explore cross-lingual cross-domain performance of fine-tuned models and state-of-the-art LLMs and investigate modular approaches to domain and language adaptation.We witness **1)** considerable performance _variations_ across domain-language combinations within model classes and **2)** considerable performance _drops_ between source and target language-domain combinations across all model sizes. We demonstrate that M2QA is far from solved, and new methods to effectively transfer both linguistic and domain-specific information are necessary.

Freie Schlagworte: UKP_p_InterText, UKP_p_PEER, UKP_p_LOEWE_Spitzenprofessur
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 17 Dez 2024 11:25
Letzte Änderung: 17 Dez 2024 11:25
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen