Ruan, Qian ; Kuznetsov, Ilia ; Gurevych, Iryna (2024)
Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions.
29th Conference on Empirical Methods in Natural Language Processing. Miami, USA (12.11.2024 - 16.11.2024)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Classification is a core NLP task architecture with many potential applications. While large language models (LLMs) have brought substantial advancements in text generation, their potential for enhancing classification tasks remains underexplored. To address this gap, we propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches. We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task. Our extensive experiments and systematic comparisons with various training approaches and a representative selection of LLMs yield new insights into their application for EIC. We investigate the generalizability of these findings on five further classification tasks. To demonstrate the proposed methods and address the data shortage for empirical edit analysis, we use our best-performing EIC model to create Re3-Sci2.0, a new large-scale dataset of 1,780 scientific document revisions with over 94k labeled edits. The quality of the dataset is assessed through human evaluation. The new dataset enables an in-depth empirical study of human editing behavior in academic writing. We make our experimental framework, models and data publicly available.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Ruan, Qian ; Kuznetsov, Ilia ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions |
Sprache: | Englisch |
Publikationsjahr: | November 2024 |
Verlag: | ACL |
Buchtitel: | EMNLP 2024: The 2024 Conference on Empirical Methods in Natural Language Processing: Proceedings of the Conference |
Veranstaltungstitel: | 29th Conference on Empirical Methods in Natural Language Processing |
Veranstaltungsort: | Miami, USA |
Veranstaltungsdatum: | 12.11.2024 - 16.11.2024 |
URL / URN: | https://aclanthology.org/2024.emnlp-main.839/ |
Kurzbeschreibung (Abstract): | Classification is a core NLP task architecture with many potential applications. While large language models (LLMs) have brought substantial advancements in text generation, their potential for enhancing classification tasks remains underexplored. To address this gap, we propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches. We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task. Our extensive experiments and systematic comparisons with various training approaches and a representative selection of LLMs yield new insights into their application for EIC. We investigate the generalizability of these findings on five further classification tasks. To demonstrate the proposed methods and address the data shortage for empirical edit analysis, we use our best-performing EIC model to create Re3-Sci2.0, a new large-scale dataset of 1,780 scientific document revisions with over 94k labeled edits. The quality of the dataset is assessed through human evaluation. The new dataset enables an in-depth empirical study of human editing behavior in academic writing. We make our experimental framework, models and data publicly available. |
Freie Schlagworte: | UKP_p_PEER, UKP_p_InterText |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 17 Dez 2024 11:21 |
Letzte Änderung: | 17 Dez 2024 11:21 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |