TU Darmstadt / ULB / TUbiblio

Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs

Puerto, Haritz ; Tutek, Martin ; Aditya, Somak ; Zhu, Xiaodan ; Gurevych, Iryna (2024)
Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs.
29th Conference on Empirical Methods in Natural Language Processing. Miami, USA (12.11.2024 - 16.11.2024)
doi: 10.18653/v1/2024.emnlp-main.629
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Reasoning is a fundamental component of language understanding. Recent prompting techniques, such as chain of thought, have consistently improved LLMs’ performance on various reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs in the inference stage. In this paper, we investigate the effect of the input representation on the reasoning abilities of LLMs. We hypothesize that representing natural language tasks as code can enhance specific reasoning abilities such as entity tracking or logical reasoning. To study this, we propose code prompting, a methodology we operationalize as a chain of prompts that transforms a natural language problem into code and directly prompts the LLM using the generated code without resorting to external code execution. We find that code prompting exhibits a high-performance boost for multiple LLMs (up to 22.52 percentage points on GPT 3.5, 7.75 on Mixtral, and 16.78 on Mistral) across multiple conditional reasoning datasets. We then conduct comprehensive experiments to understand how the code representation triggers reasoning abilities and which capabilities are elicited in the underlying models. Our analysis on GPT 3.5 reveals that the code formatting of the input problem is essential for performance improvement. Furthermore, the code representation improves sample efficiency of in-context learning and facilitates state tracking of entities.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Puerto, Haritz ; Tutek, Martin ; Aditya, Somak ; Zhu, Xiaodan ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs
Sprache: Englisch
Publikationsjahr: November 2024
Verlag: ACL
Buchtitel: EMNLP 2024: The 2024 Conference on Empirical Methods in Natural Language Processing: Proceedings of the Conference
Veranstaltungstitel: 29th Conference on Empirical Methods in Natural Language Processing
Veranstaltungsort: Miami, USA
Veranstaltungsdatum: 12.11.2024 - 16.11.2024
DOI: 10.18653/v1/2024.emnlp-main.629
URL / URN: https://aclanthology.org/2024.emnlp-main.629/
Kurzbeschreibung (Abstract):

Reasoning is a fundamental component of language understanding. Recent prompting techniques, such as chain of thought, have consistently improved LLMs’ performance on various reasoning tasks. Nevertheless, there is still little understanding of what triggers reasoning abilities in LLMs in the inference stage. In this paper, we investigate the effect of the input representation on the reasoning abilities of LLMs. We hypothesize that representing natural language tasks as code can enhance specific reasoning abilities such as entity tracking or logical reasoning. To study this, we propose code prompting, a methodology we operationalize as a chain of prompts that transforms a natural language problem into code and directly prompts the LLM using the generated code without resorting to external code execution. We find that code prompting exhibits a high-performance boost for multiple LLMs (up to 22.52 percentage points on GPT 3.5, 7.75 on Mixtral, and 16.78 on Mistral) across multiple conditional reasoning datasets. We then conduct comprehensive experiments to understand how the code representation triggers reasoning abilities and which capabilities are elicited in the underlying models. Our analysis on GPT 3.5 reveals that the code formatting of the input problem is essential for performance improvement. Furthermore, the code representation improves sample efficiency of in-context learning and facilitates state tracking of entities.

Freie Schlagworte: UKP_p_square, UKP_p_crisp_senpai
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 09 Dez 2024 13:02
Letzte Änderung: 09 Dez 2024 13:02
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen