TU Darmstadt / ULB / TUbiblio

Energy Aware Technology Mapping of Genetic Logic Circuits

Kubaczka, Erik ; Gehringer, Maximilian ; Marlhens, Jérémie J. M. ; Schwarz, Tobias ; Molderings, Maik ; Engelmann, Nicolai ; Garcia, Hernan G. ; Hochberger, Christian ; Koeppl, Heinz (2024)
Energy Aware Technology Mapping of Genetic Logic Circuits.
In: ACS Synthetic Biology, 13 (10)
doi: 10.1021/acssynbio.4c00395
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Energy and its dissipation are fundamental to all living systems, including cells. Insufficient abundance of energy carriers─as caused by the additional burden of artificial genetic circuits─shifts a cell’s priority to survival, also impairing the functionality of the genetic circuit. Moreover, recent works have shown the importance of energy expenditure in information transmission. Despite living organisms being non-equilibrium systems, non-equilibrium models capable of accounting for energy dissipation and non-equilibrium response curves are not yet employed in genetic design automation (GDA) software. To this end, we introduce Energy Aware Technology Mapping, the automated design of genetic logic circuits with respect to energy efficiency and functionality. The basis for this is an energy aware non-equilibrium steady state model of gene expression, capturing characteristics like energy dissipation─which we link to the entropy production rate─and transcriptional bursting, relevant to eukaryotes as well as prokaryotes. Our evaluation shows that a genetic logic circuit’s functional performance and energy efficiency are disjoint optimization goals. For our benchmark, energy efficiency improves by 37.2% on average when comparing to functionally optimized variants. We discover a linear increase in energy expenditure and overall protein expression with the circuit size, where Energy Aware Technology Mapping allows for designing genetic logic circuits with the energetic costs of circuits that are one to two gates smaller. Structural variants improve this further, while results show the Pareto dominance among structures of a single Boolean function. By incorporating energy demand into the design, Energy Aware Technology Mapping enables energy efficiency by design. This extends current GDA tools and complements approaches coping with burden in vivo.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kubaczka, Erik ; Gehringer, Maximilian ; Marlhens, Jérémie J. M. ; Schwarz, Tobias ; Molderings, Maik ; Engelmann, Nicolai ; Garcia, Hernan G. ; Hochberger, Christian ; Koeppl, Heinz
Art des Eintrags: Bibliographie
Titel: Energy Aware Technology Mapping of Genetic Logic Circuits
Sprache: Englisch
Publikationsjahr: 8 Oktober 2024
Verlag: ACS Publ.
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACS Synthetic Biology
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 10
DOI: 10.1021/acssynbio.4c00395
Zugehörige Links:
Kurzbeschreibung (Abstract):

Energy and its dissipation are fundamental to all living systems, including cells. Insufficient abundance of energy carriers─as caused by the additional burden of artificial genetic circuits─shifts a cell’s priority to survival, also impairing the functionality of the genetic circuit. Moreover, recent works have shown the importance of energy expenditure in information transmission. Despite living organisms being non-equilibrium systems, non-equilibrium models capable of accounting for energy dissipation and non-equilibrium response curves are not yet employed in genetic design automation (GDA) software. To this end, we introduce Energy Aware Technology Mapping, the automated design of genetic logic circuits with respect to energy efficiency and functionality. The basis for this is an energy aware non-equilibrium steady state model of gene expression, capturing characteristics like energy dissipation─which we link to the entropy production rate─and transcriptional bursting, relevant to eukaryotes as well as prokaryotes. Our evaluation shows that a genetic logic circuit’s functional performance and energy efficiency are disjoint optimization goals. For our benchmark, energy efficiency improves by 37.2% on average when comparing to functionally optimized variants. We discover a linear increase in energy expenditure and overall protein expression with the circuit size, where Energy Aware Technology Mapping allows for designing genetic logic circuits with the energetic costs of circuits that are one to two gates smaller. Structural variants improve this further, while results show the Pareto dominance among structures of a single Boolean function. By incorporating energy demand into the design, Energy Aware Technology Mapping enables energy efficiency by design. This extends current GDA tools and complements approaches coping with burden in vivo.

Freie Schlagworte: genetic design automation, energy, non-equilibrium, thermodynamics, synthetic biology, gene-expression, technology mapping, metabolic burden, computer aided design, entropy production rate
Zusätzliche Informationen:

Erstveröffentlichung

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Interdisziplinäre Forschungsprojekte
Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology
Hinterlegungsdatum: 28 Nov 2024 09:42
Letzte Änderung: 28 Nov 2024 09:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen