TU Darmstadt / ULB / TUbiblio

Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering

Thor, Nathalie ; Winkens, Georg ; Bernauer, Jan ; Petry, Nils‐Christian ; Beck, Katharina ; Wang, Jin ; Schwaiger, Ruth ; Riedel, Ralf ; Kolb, Ute ; Lepple, Maren ; Pundt, Astrid (2024)
Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering.
In: Advanced Engineering Materials, 2024, 26 (17)
doi: 10.26083/tuprints-00028273
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The high‐temperature microstructural evolution and mechanical properties of two SiC‐based polymer‐derived ceramics with different Hf:Ta molar ratios are investigated using electron microscopy techniques and manipulated by nanoindentation. The as‐pyrolyzed ceramic powder consists of an amorphous Si(HfₓTa₁₋ₓ)C(N,O) structure (where x = 0.2, 0.7) with localized nanocrystalline transition metal carbides (TMCs). Subsequent application of the field‐assisted sintering technique (FAST) for high‐temperature consolidation results in a crystalline (HfₓTa₁₋ₓ)C/SiC ultra‐high temperature ceramic nanocomposite. The microstructure contains powder particle‐sized grains and sinter necks between the former powder particles. The powder particles consist of a β‐SiC matrix and small TMCs. Large TMCs are observed on the internal surfaces of former powder particles. This is due to the pulsed direct current and the resulting Joule heating that facilitates diffusion as well as oxygen impurities. Sinter necks of large β‐SiC grains form during the FAST process. The microstructural regions are assessed using high‐throughput nanoindentation. The hardness for SiC/(Hf₀.₇Ta₀.₃)C is measured on the formed grains and the sinter necks giving mean hardness values of about 27 and 37 GPa, respectively.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Thor, Nathalie ; Winkens, Georg ; Bernauer, Jan ; Petry, Nils‐Christian ; Beck, Katharina ; Wang, Jin ; Schwaiger, Ruth ; Riedel, Ralf ; Kolb, Ute ; Lepple, Maren ; Pundt, Astrid
Art des Eintrags: Zweitveröffentlichung
Titel: Microstructure Characterization and Mechanical Properties of Polymer‐Derived (HfₓTa₁₋ₓ)C/SiC Ceramic Prepared upon Field‐Assisted Sintering Technique/Spark Plasma Sintering
Sprache: Englisch
Publikationsjahr: 27 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 26
(Heft-)Nummer: 17
Kollation: 17 Seiten
DOI: 10.26083/tuprints-00028273
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28273
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The high‐temperature microstructural evolution and mechanical properties of two SiC‐based polymer‐derived ceramics with different Hf:Ta molar ratios are investigated using electron microscopy techniques and manipulated by nanoindentation. The as‐pyrolyzed ceramic powder consists of an amorphous Si(HfₓTa₁₋ₓ)C(N,O) structure (where x = 0.2, 0.7) with localized nanocrystalline transition metal carbides (TMCs). Subsequent application of the field‐assisted sintering technique (FAST) for high‐temperature consolidation results in a crystalline (HfₓTa₁₋ₓ)C/SiC ultra‐high temperature ceramic nanocomposite. The microstructure contains powder particle‐sized grains and sinter necks between the former powder particles. The powder particles consist of a β‐SiC matrix and small TMCs. Large TMCs are observed on the internal surfaces of former powder particles. This is due to the pulsed direct current and the resulting Joule heating that facilitates diffusion as well as oxygen impurities. Sinter necks of large β‐SiC grains form during the FAST process. The microstructural regions are assessed using high‐throughput nanoindentation. The hardness for SiC/(Hf₀.₇Ta₀.₃)C is measured on the formed grains and the sinter necks giving mean hardness values of about 27 and 37 GPa, respectively.

Freie Schlagworte: field‐assisted sintering technique, microstructures, nanoindentation, polymer‐derived ceramics, silicon carbide, transition metal carbides, ultra‐high temperature ceramics
ID-Nummer: Artikel-ID: 2301841
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-282735
Zusätzliche Informationen:

Special Issue: Materials Compounds from Composite Materials for Applications in Extreme Conditions

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 27 Nov 2024 12:33
Letzte Änderung: 28 Nov 2024 06:58
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen