Tonglet, Jonathan ; Moens, Marie-Francine ; Gurevych, Iryna (2024)
“Image, Tell me your story!” Predicting the original meta-context of visual misinformation.
29th Conference on Empirical Methods in Natural Language Processing. Miami, USA (12.11.2024 - 16.11.2024)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
To assist human fact-checkers, researchers have developed automated approaches for visual misinformation detection. These methods assign veracity scores by identifying inconsistencies between the image and its caption, or by detecting forgeries in the image. However, they neglect a crucial point of the human fact-checking process: identifying the original meta-context of the image. By explaining what is actually true about the image, fact-checkers can better detect misinformation, focus their efforts on check-worthy visual content, engage in counter-messaging before misinformation spreads widely, and make their explanation more convincing. Here, we fill this gap by introducing the task of automated image contextualization. We create 5Pils, a dataset of 1,676 fact-checked images with question-answer pairs about their original meta-context. Annotations are based on the 5 Pillars fact-checking framework. We implement a first baseline that grounds the image in its original meta-context using the content of the image and textual evidence retrieved from the open web. Our experiments show promising results while highlighting several open challenges in retrieval and reasoning.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Tonglet, Jonathan ; Moens, Marie-Francine ; Gurevych, Iryna |
Art des Eintrags: | Bibliographie |
Titel: | “Image, Tell me your story!” Predicting the original meta-context of visual misinformation |
Sprache: | Englisch |
Publikationsjahr: | 17 November 2024 |
Ort: | Miami, Florida |
Verlag: | Association for Computational Linguistics |
Buchtitel: | EMNLP 2024: The 2024 Conference on Empirical Methods in Natural Language Processing: Proceedings of the Conference |
Veranstaltungstitel: | 29th Conference on Empirical Methods in Natural Language Processing |
Veranstaltungsort: | Miami, USA |
Veranstaltungsdatum: | 12.11.2024 - 16.11.2024 |
URL / URN: | https://aclanthology.org/2024.emnlp-main.448/ |
Kurzbeschreibung (Abstract): | To assist human fact-checkers, researchers have developed automated approaches for visual misinformation detection. These methods assign veracity scores by identifying inconsistencies between the image and its caption, or by detecting forgeries in the image. However, they neglect a crucial point of the human fact-checking process: identifying the original meta-context of the image. By explaining what is actually true about the image, fact-checkers can better detect misinformation, focus their efforts on check-worthy visual content, engage in counter-messaging before misinformation spreads widely, and make their explanation more convincing. Here, we fill this gap by introducing the task of automated image contextualization. We create 5Pils, a dataset of 1,676 fact-checked images with question-answer pairs about their original meta-context. Annotations are based on the 5 Pillars fact-checking framework. We implement a first baseline that grounds the image in its original meta-context using the content of the image and textual evidence retrieved from the open web. Our experiments show promising results while highlighting several open challenges in retrieval and reasoning. |
Freie Schlagworte: | UKP_p_seditrah_factcheck, UKP_p_emergencity, emergenCITY |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 28 Nov 2024 09:49 |
Letzte Änderung: | 28 Nov 2024 09:49 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |