Cui, Kai ; Hauck, Sascha ; Fabian, Christian ; Koeppl, Heinz (2024)
Learning Decentralized Partially Observable Mean Field Control for Artificial Collective Behavior.
International Conference on Learning Representations. Vienna, Austria (07.05.2024 - 11.05.2024)
doi: 10.26083/tuprints-00028689
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Recent reinforcement learning (RL) methods have achieved success in various domains. However, multi-agent RL (MARL) remains a challenge in terms of decentralization, partial observability and scalability to many agents. Meanwhile, collective behavior requires resolution of the aforementioned challenges, and remains of importance to many state-of-the-art applications such as active matter physics, self-organizing systems, opinion dynamics, and biological or robotic swarms. Here, MARL via mean field control (MFC) offers a potential solution to scalability, but fails to consider decentralized and partially observable systems. In this paper, we enable decentralized behavior of agents under partial information by proposing novel models for decentralized partially observable MFC (Dec-POMFC), a broad class of problems with permutation-invariant agents allowing for reduction to tractable single-agent Markov decision processes (MDP) with single-agent RL solution. We provide rigorous theoretical results, including a dynamic programming principle, together with optimality guarantees for Dec-POMFC solutions applied to finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy gradient methods for MARL via centralized training and decentralized execution, together with policy gradient approximation guarantees. In addition, we improve upon state-of-the-art histogram-based MFC by kernel methods, which is of separate interest also for fully observable MFC. We evaluate numerically on representative collective behavior tasks such as adapted Kuramoto and Vicsek swarming models, being on par with state-of-the-art MARL. Overall, our framework takes a step towards RL-based engineering of artificial collective behavior via MFC.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2024 |
Autor(en): | Cui, Kai ; Hauck, Sascha ; Fabian, Christian ; Koeppl, Heinz |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Learning Decentralized Partially Observable Mean Field Control for Artificial Collective Behavior |
Sprache: | Englisch |
Publikationsjahr: | 25 November 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 8 Mai 2024 |
Verlag: | ICLR |
Buchtitel: | ICLR 2024 The Twelfth International Conference on Learning Representations |
Kollation: | 40 Seiten |
Veranstaltungstitel: | International Conference on Learning Representations |
Veranstaltungsort: | Vienna, Austria |
Veranstaltungsdatum: | 07.05.2024 - 11.05.2024 |
DOI: | 10.26083/tuprints-00028689 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/28689 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Recent reinforcement learning (RL) methods have achieved success in various domains. However, multi-agent RL (MARL) remains a challenge in terms of decentralization, partial observability and scalability to many agents. Meanwhile, collective behavior requires resolution of the aforementioned challenges, and remains of importance to many state-of-the-art applications such as active matter physics, self-organizing systems, opinion dynamics, and biological or robotic swarms. Here, MARL via mean field control (MFC) offers a potential solution to scalability, but fails to consider decentralized and partially observable systems. In this paper, we enable decentralized behavior of agents under partial information by proposing novel models for decentralized partially observable MFC (Dec-POMFC), a broad class of problems with permutation-invariant agents allowing for reduction to tractable single-agent Markov decision processes (MDP) with single-agent RL solution. We provide rigorous theoretical results, including a dynamic programming principle, together with optimality guarantees for Dec-POMFC solutions applied to finite swarms of interest. Algorithmically, we propose Dec-POMFC-based policy gradient methods for MARL via centralized training and decentralized execution, together with policy gradient approximation guarantees. In addition, we improve upon state-of-the-art histogram-based MFC by kernel methods, which is of separate interest also for fully observable MFC. We evaluate numerically on representative collective behavior tasks such as adapted Kuramoto and Vicsek swarming models, being on par with state-of-the-art MARL. Overall, our framework takes a step towards RL-based engineering of artificial collective behavior via MFC. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-286893 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab |
Hinterlegungsdatum: | 25 Nov 2024 10:49 |
Letzte Änderung: | 28 Nov 2024 08:46 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Learning Decentralized Partially Observable Mean Field Control for Artificial Collective Behavior. (deposited 25 Nov 2024 10:49) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |