TU Darmstadt / ULB / TUbiblio

What can machine learning help with microstructure-informed materials modeling and design?

Peng, Xiang-Long ; Fathidoost, Mozhdeh ; Lin, Binbin ; Yang, Yangyiwei ; Xu, Bai-Xiang (2024)
What can machine learning help with microstructure-informed materials modeling and design?
In: MRS Bulletin
doi: 10.1557/s43577-024-00797-4
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Machine learning (ML) techniques have been widely employed as effective tools in addressing various engineering challenges in recent years, particularly for the challenging task of microstructure-informed materials modeling. This work provides a comprehensive review of the current ML-assisted and data-driven advancements in this field, including microstructure characterization and reconstruction, multiscale simulation, correlations among process, microstructure, and properties, as well as microstructure optimization and inverse design. It outlines the achievements of existing research through best practices and suggests potential avenues for future investigations. Moreover, it prepares the readers with educative instructions of basic knowledge and an overview on ML, microstructure descriptors, and ML-assisted material modeling, lowering the interdisciplinary hurdles. It should help to stimulate and attract more research attention to the rapidly growing field of ML-based modeling and design of microstructured materials. Graphical abstract

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Peng, Xiang-Long ; Fathidoost, Mozhdeh ; Lin, Binbin ; Yang, Yangyiwei ; Xu, Bai-Xiang
Art des Eintrags: Bibliographie
Titel: What can machine learning help with microstructure-informed materials modeling and design?
Sprache: Englisch
Publikationsjahr: 26 Oktober 2024
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: MRS Bulletin
DOI: 10.1557/s43577-024-00797-4
Kurzbeschreibung (Abstract):

Machine learning (ML) techniques have been widely employed as effective tools in addressing various engineering challenges in recent years, particularly for the challenging task of microstructure-informed materials modeling. This work provides a comprehensive review of the current ML-assisted and data-driven advancements in this field, including microstructure characterization and reconstruction, multiscale simulation, correlations among process, microstructure, and properties, as well as microstructure optimization and inverse design. It outlines the achievements of existing research through best practices and suggests potential avenues for future investigations. Moreover, it prepares the readers with educative instructions of basic knowledge and an overview on ML, microstructure descriptors, and ML-assisted material modeling, lowering the interdisciplinary hurdles. It should help to stimulate and attract more research attention to the rapidly growing field of ML-based modeling and design of microstructured materials. Graphical abstract

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 21 Nov 2024 06:12
Letzte Änderung: 21 Nov 2024 06:47
PPN: 52369153X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen