TU Darmstadt / ULB / TUbiblio

Common Sense Initialization of Mixture Density Networks for Motion Planning with Overestimated Number of Components.

Kreutz, Thomas ; Mühlhäuser, Max ; Sanchez Guinea, Alejandro (2024)
Common Sense Initialization of Mixture Density Networks for Motion Planning with Overestimated Number of Components.
12th International Conference on Learning Representations (ICLR 2024). Vienna, Austria (07.05.2024-11.05.2024)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Mixture density networks (MDNs) are a natural choice to model multi-modal predictions for trajectory prediction or motion planning. However, MDNs are often difficult to train due to mode collapse and a need for careful initialization, which becomes even more problematic when the number of mixture components are strongly overestimated. To address this issue in motion planning problems, we propose a pre-training scheme for MDNs called common sense initialization (CSI). Pre-training with CSI allows variety-encouraging optimization such as Winner-Takes-All (WTA) to exploit the initialized weights during training, so that the MDN can converge when the number of components are overestimated. This paper presents empirical evidence for the effectiveness of CSI when applied to motion planning of pedestrian agents in urban environments.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Kreutz, Thomas ; Mühlhäuser, Max ; Sanchez Guinea, Alejandro
Art des Eintrags: Bibliographie
Titel: Common Sense Initialization of Mixture Density Networks for Motion Planning with Overestimated Number of Components.
Sprache: Englisch
Publikationsjahr: 19 März 2024
Verlag: OpenReview
Buchtitel: The Second Tiny Papers Track at ICLR 2024
Veranstaltungstitel: 12th International Conference on Learning Representations (ICLR 2024)
Veranstaltungsort: Vienna, Austria
Veranstaltungsdatum: 07.05.2024-11.05.2024
URL / URN: https://openreview.net/forum?id=C6EHiLaiBT
Kurzbeschreibung (Abstract):

Mixture density networks (MDNs) are a natural choice to model multi-modal predictions for trajectory prediction or motion planning. However, MDNs are often difficult to train due to mode collapse and a need for careful initialization, which becomes even more problematic when the number of mixture components are strongly overestimated. To address this issue in motion planning problems, we propose a pre-training scheme for MDNs called common sense initialization (CSI). Pre-training with CSI allows variety-encouraging optimization such as Winner-Takes-All (WTA) to exploit the initialized weights during training, so that the MDN can converge when the number of components are overestimated. This paper presents empirical evidence for the effectiveness of CSI when applied to motion planning of pedestrian agents in urban environments.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
Hinterlegungsdatum: 28 Nov 2024 08:40
Letzte Änderung: 28 Nov 2024 08:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen