TU Darmstadt / ULB / TUbiblio

Near‐surface plastic deformation in polycrystalline SrTiO₃ via room‐temperature cyclic Brinell indentation

Okafor, Chukwudalu ; Ding, Kuan ; Preuß, Oliver ; Khansur, Neamul ; Rheinheimer, Wolfgang ; Fang, Xufei (2024)
Near‐surface plastic deformation in polycrystalline SrTiO₃ via room‐temperature cyclic Brinell indentation.
In: Journal of the American Ceramic Society, 2024, 107 (10)
doi: 10.26083/tuprints-00028274
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Dislocations are being used to tune versatile mechanical and functional properties in oxides with most current studies focusing on single crystals. For potentially wider applications, polycrystalline ceramics are of concern, provided that dislocations can be successfully introduced. However, in addition to preexisting pores and flaws, a major barrier for bulk plastic deformation of polycrystalline ceramics lies in the grain boundaries (GBs), which can lead to dislocation pile‐up and cracking at the GBs due to the lack of sufficient independent slip systems in ceramics at room temperature. Here, we use the cyclic Brinell indentation method to circumvent the bulk deformation and focus on near‐surface regions to investigate the plastic deformation of polycrystalline SrTiO₃ at room temperature. Dislocation etch‐pit analysis suggests that plastic deformation can be initiated within the grains, at the GBs, and from the GB triple junction pores. The deformability of the individual grains is found to be dependent on the number of cycles, as also independently evidenced on single‐crystal SrTiO₃ with representative surface orientations (001), (011), and (111). We also identify a grain‐size‐dependent plastic deformation.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Okafor, Chukwudalu ; Ding, Kuan ; Preuß, Oliver ; Khansur, Neamul ; Rheinheimer, Wolfgang ; Fang, Xufei
Art des Eintrags: Zweitveröffentlichung
Titel: Near‐surface plastic deformation in polycrystalline SrTiO₃ via room‐temperature cyclic Brinell indentation
Sprache: Englisch
Publikationsjahr: 19 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Oktober 2024
Ort der Erstveröffentlichung: Oxford
Verlag: Wiley-Blackwell
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of the American Ceramic Society
Jahrgang/Volume einer Zeitschrift: 107
(Heft-)Nummer: 10
DOI: 10.26083/tuprints-00028274
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28274
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Dislocations are being used to tune versatile mechanical and functional properties in oxides with most current studies focusing on single crystals. For potentially wider applications, polycrystalline ceramics are of concern, provided that dislocations can be successfully introduced. However, in addition to preexisting pores and flaws, a major barrier for bulk plastic deformation of polycrystalline ceramics lies in the grain boundaries (GBs), which can lead to dislocation pile‐up and cracking at the GBs due to the lack of sufficient independent slip systems in ceramics at room temperature. Here, we use the cyclic Brinell indentation method to circumvent the bulk deformation and focus on near‐surface regions to investigate the plastic deformation of polycrystalline SrTiO₃ at room temperature. Dislocation etch‐pit analysis suggests that plastic deformation can be initiated within the grains, at the GBs, and from the GB triple junction pores. The deformability of the individual grains is found to be dependent on the number of cycles, as also independently evidenced on single‐crystal SrTiO₃ with representative surface orientations (001), (011), and (111). We also identify a grain‐size‐dependent plastic deformation.

Freie Schlagworte: cyclic indentation, dislocation, plasticity, strontium titanate, surface deformation
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-282747
Zusätzliche Informationen:

This article also appears in: Editor’s Choice JACerS 2024

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 19 Nov 2024 12:30
Letzte Änderung: 20 Nov 2024 11:01
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen