TU Darmstadt / ULB / TUbiblio

Thermal Conductivity Analysis of Polymer‐Derived Nanocomposite via Image‐Based Structure Reconstruction, Computational Homogenization, and Machine Learning

Fathidoost, Mozhdeh ; Yang, Yangyiwei ; Thor, Nathalie ; Bernauer, Jan ; Pundt, Astrid ; Riedel, Ralf ; Xu, Bai‐Xiang (2024)
Thermal Conductivity Analysis of Polymer‐Derived Nanocomposite via Image‐Based Structure Reconstruction, Computational Homogenization, and Machine Learning.
In: Advanced Engineering Materials, 2024, 26 (17)
doi: 10.26083/tuprints-00028282
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Macroscopic thermal properties of engineered or inherent composites depend substantially on the composite structure and the interface characteristics. While it is acknowledged that unveiling such dependency relation is essential for materials design, the complexity involved in, e.g., microstructure representation and limited data impedes the research progress. Herein, this issue is tackled by machine learning techniques on image‐based microstructure and property data predicted from physics simulations, along with experimental validation. The methodology is demonstrated for the model system (Hf₀.₇Ta₀.₃)C/SiC ultrahigh‐temperature ceramic nanocomposite. The structure is reconstructed from scanning electron microscope images, and is resolved by a diffuse‐interface representation, which is advantageous in handling complicated structure and interface properties. Subsequently, hierarchical finite element homogenization is carried out to evaluate the effective thermal conductivity. A thorough comparison between the computed results and experimentally measured data, conducted across diverse temperatures and varying interface thermal resistances, reveals a high level of agreement. The observed agreement allows for the inverse estimation of the interface thermal resistance, a parameter typically challenging to ascertain directly through experimental means. Utilizing comprehensive data, a machine learning surrogate model has been meticulously trained to accurately predict the effective thermal conductivity of composite structures with exceptional performance.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Fathidoost, Mozhdeh ; Yang, Yangyiwei ; Thor, Nathalie ; Bernauer, Jan ; Pundt, Astrid ; Riedel, Ralf ; Xu, Bai‐Xiang
Art des Eintrags: Zweitveröffentlichung
Titel: Thermal Conductivity Analysis of Polymer‐Derived Nanocomposite via Image‐Based Structure Reconstruction, Computational Homogenization, and Machine Learning
Sprache: Englisch
Publikationsjahr: 18 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 26
(Heft-)Nummer: 17
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00028282
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28282
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Macroscopic thermal properties of engineered or inherent composites depend substantially on the composite structure and the interface characteristics. While it is acknowledged that unveiling such dependency relation is essential for materials design, the complexity involved in, e.g., microstructure representation and limited data impedes the research progress. Herein, this issue is tackled by machine learning techniques on image‐based microstructure and property data predicted from physics simulations, along with experimental validation. The methodology is demonstrated for the model system (Hf₀.₇Ta₀.₃)C/SiC ultrahigh‐temperature ceramic nanocomposite. The structure is reconstructed from scanning electron microscope images, and is resolved by a diffuse‐interface representation, which is advantageous in handling complicated structure and interface properties. Subsequently, hierarchical finite element homogenization is carried out to evaluate the effective thermal conductivity. A thorough comparison between the computed results and experimentally measured data, conducted across diverse temperatures and varying interface thermal resistances, reveals a high level of agreement. The observed agreement allows for the inverse estimation of the interface thermal resistance, a parameter typically challenging to ascertain directly through experimental means. Utilizing comprehensive data, a machine learning surrogate model has been meticulously trained to accurately predict the effective thermal conductivity of composite structures with exceptional performance.

Freie Schlagworte: computational thermal homogenization, machine learning, polymer‐derived ceramics, two‐point statistics
ID-Nummer: Artikel-ID: 2302021
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-282820
Zusätzliche Informationen:

Special Issue: Materials Compounds from Composite Materials for Applications in Extreme Conditions

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
Hinterlegungsdatum: 18 Nov 2024 12:16
Letzte Änderung: 19 Nov 2024 06:54
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen