Gaballah, Sarah Abdelwahab ; Abdullah, Lamya ; Alishahi, Mina ; Nguyen, Thanh Hoang Long ; Zimmer, Ephraim ; Mühlhäuser, Max ; Marky, Karola (2024)
Anonify: Decentralized Dual-level Anonymity for Medical Data Donation.
In: Proceedings on Privacy Enhancing Technologies, 2024 (3)
doi: 10.56553/popets-2024-0069
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Medical data donation involves voluntarily sharing medical data with research institutions, which is crucial for advancing healthcare research. However, the sensitive nature of medical data poses privacy and security challenges. The primary concern is the risk of de-anonymization, where users can be linked to their donated data through background knowledge or communication metadata. In this paper, we introduce Anonify, a decentralized anonymity protocol offering strong user protection during data donation without reliance on a single entity. It achieves dual-level anonymity protection, covering both communication and data aspects by leveraging Distributed Point Functions, and incorporating k-anonymity and stratified sampling within a secret-sharing-based setting. Anonify ensures that the donated data is in a form that affords flexibility for researchers in their analyses. Our evaluation demonstrates the efficiency of Anonify in preserving privacy and optimizing data utility. Furthermore, the performance of machine learning algorithms on the anonymized datasets generated by the protocol shows high accuracy and precision.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Gaballah, Sarah Abdelwahab ; Abdullah, Lamya ; Alishahi, Mina ; Nguyen, Thanh Hoang Long ; Zimmer, Ephraim ; Mühlhäuser, Max ; Marky, Karola |
Art des Eintrags: | Bibliographie |
Titel: | Anonify: Decentralized Dual-level Anonymity for Medical Data Donation |
Sprache: | Englisch |
Publikationsjahr: | 2024 |
Verlag: | PET Symposium |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Proceedings on Privacy Enhancing Technologies |
Jahrgang/Volume einer Zeitschrift: | 2024 |
(Heft-)Nummer: | 3 |
Buchtitel: | Proceedings on Privacy Enhancing Technologies |
Veranstaltungstitel: | The 24th Privacy Enhancing Technologies Symposium |
Veranstaltungsort: | Bristol, UK |
Veranstaltungsdatum: | 15.07.2024-20.07.2024 |
DOI: | 10.56553/popets-2024-0069 |
Kurzbeschreibung (Abstract): | Medical data donation involves voluntarily sharing medical data with research institutions, which is crucial for advancing healthcare research. However, the sensitive nature of medical data poses privacy and security challenges. The primary concern is the risk of de-anonymization, where users can be linked to their donated data through background knowledge or communication metadata. In this paper, we introduce Anonify, a decentralized anonymity protocol offering strong user protection during data donation without reliance on a single entity. It achieves dual-level anonymity protection, covering both communication and data aspects by leveraging Distributed Point Functions, and incorporating k-anonymity and stratified sampling within a secret-sharing-based setting. Anonify ensures that the donated data is in a form that affords flexibility for researchers in their analyses. Our evaluation demonstrates the efficiency of Anonify in preserving privacy and optimizing data utility. Furthermore, the performance of machine learning algorithms on the anonymized datasets generated by the protocol shows high accuracy and precision. |
Freie Schlagworte: | Medical Data Donation, Data Anonymity, Anonymous Communication, Distributed Point Functions, k-anonymity, Stratified Sampling |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Telekooperation |
Hinterlegungsdatum: | 28 Nov 2024 09:17 |
Letzte Änderung: | 28 Nov 2024 09:17 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |