TU Darmstadt / ULB / TUbiblio

A data-driven strategy for phase field nucleation modeling

Hu, Yang ; Wang, Kai ; Spatschek, Robert (2024)
A data-driven strategy for phase field nucleation modeling.
In: npj materials degradation, 2024 (8)
doi: 10.1038/s41529-024-00529-8
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Hu, Yang ; Wang, Kai ; Spatschek, Robert
Art des Eintrags: Bibliographie
Titel: A data-driven strategy for phase field nucleation modeling
Sprache: Englisch
Publikationsjahr: 30 Oktober 2024
Ort: [London]
Verlag: Nature Research
Titel der Zeitschrift, Zeitung oder Schriftenreihe: npj materials degradation
Jahrgang/Volume einer Zeitschrift: 2024
(Heft-)Nummer: 8
Kollation: 11 Seiten
DOI: 10.1038/s41529-024-00529-8
URL / URN: https://www.nature.com/articles/s41529-024-00529-8
Kurzbeschreibung (Abstract):

We propose a data-driven strategy for parameter selection in phase field nucleation models using machine learning and apply it to oxide nucleation in Fe-Cr alloys. A grand potential-based phase field model, incorporating Langevin noise, is employed to simulate oxide nucleation and benchmarked against the Johnson-Mehl-Avrami-Kolmogorov model. Three independent parameters in the phase field simulations (Langevin noise strength, numerical grid discretization and critical nucleation radius) are identified as essential for accurately modeling the nucleation behavior. These parameters serve as input features for machine learning classification and regression models. The classification model categorizes nucleation behavior into three nucleation density regimes, preventing invalid nucleation attempts in simulations, while the regression model estimates the appropriate Langevin noise strength, significantly reducing the need for time-consuming trial-and-error simulations. This data-driven approach improves the efficiency of parameter selection in phase field models and provides a generalizable method for simulating nucleation-driven microstructural evolution processes in various materials.

ID-Nummer: Artikel-ID: 109
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1548: FLAIR – Fermi Level Engineering Applied to Oxide Electroceramics
Hinterlegungsdatum: 15 Nov 2024 14:49
Letzte Änderung: 15 Nov 2024 14:49
PPN: 523600151
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen