TU Darmstadt / ULB / TUbiblio

Analysis and simulation of curved hoses under internal pressure — 3D continuum models

Hoesch, Quirin ; Roller, Michael ; Schneider‐Jung, Fabio ; Linn, Joachim ; Müller, Ralf (2024)
Analysis and simulation of curved hoses under internal pressure — 3D continuum models.
In: PAMM - Proceedings in Applied Mathematics and Mechanics, 2024, 24 (2)
doi: 10.26083/tuprints-00028269
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

This contribution aims to model and characterize the nonlinear elastic behavior of hoses under internal pressure. A highly resolved 3D continuum model is used to identify relevant effects of preformed hoses under internal pressure. The focus of this work is on the Bourdon effect, which is illustrated by simulating two simplified models, a full torus and a quarter torus. For a full torus, the Bourdon effect can be observed by the fact that the radius of curvature increases in addition to the expansion of the cross‐sectional radius. For a quarter torus, which is a simplified example of a curved hose, the Bourdon effect can be observed by the tendency of the hose to straighten under internal pressure. Furthermore it is detected for both examples that the non‐constant distribution of the poloidal (hoop) stress over the cross‐section leads to an ovalization behavior. In addition, the model of a quarter torus is extended to a more complex model with straight hose sections at both ends.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Hoesch, Quirin ; Roller, Michael ; Schneider‐Jung, Fabio ; Linn, Joachim ; Müller, Ralf
Art des Eintrags: Zweitveröffentlichung
Titel: Analysis and simulation of curved hoses under internal pressure — 3D continuum models
Sprache: Englisch
Publikationsjahr: 13 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 27 September 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: PAMM - Proceedings in Applied Mathematics and Mechanics
Jahrgang/Volume einer Zeitschrift: 24
(Heft-)Nummer: 2
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00028269
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28269
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

This contribution aims to model and characterize the nonlinear elastic behavior of hoses under internal pressure. A highly resolved 3D continuum model is used to identify relevant effects of preformed hoses under internal pressure. The focus of this work is on the Bourdon effect, which is illustrated by simulating two simplified models, a full torus and a quarter torus. For a full torus, the Bourdon effect can be observed by the fact that the radius of curvature increases in addition to the expansion of the cross‐sectional radius. For a quarter torus, which is a simplified example of a curved hose, the Bourdon effect can be observed by the tendency of the hose to straighten under internal pressure. Furthermore it is detected for both examples that the non‐constant distribution of the poloidal (hoop) stress over the cross‐section leads to an ovalization behavior. In addition, the model of a quarter torus is extended to a more complex model with straight hose sections at both ends.

ID-Nummer: Artikel-ID: e202400112
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-282693
Zusätzliche Informationen:

Special Issue: 94th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM)

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 13 Nov 2024 13:09
Letzte Änderung: 14 Nov 2024 06:16
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen