TU Darmstadt / ULB / TUbiblio

Shift-Invariance Robustness of Convolutional Neural Networks in Side-Channel Analysis

Krček, Marina ; Wu, Lichao ; Perin, Guilherme ; Picek, Stjepan (2024)
Shift-Invariance Robustness of Convolutional Neural Networks in Side-Channel Analysis.
In: Mathematics, 2024, 12 (20)
doi: 10.26083/tuprints-00028672
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Convolutional neural networks (CNNs) offer unrivaled performance in profiling side-channel analysis. This claim is corroborated by numerous results where CNNs break targets protected with masking and hiding countermeasures. One hiding countermeasure commonly investigated in related works is desynchronization (misalignment). The conclusions usually state that CNNs can break desynchronization as they are shift-invariant. This paper investigates that claim in more detail and reveals that the situation is more complex. While CNNs have certain shift-invariance, it is insufficient for commonly encountered scenarios in deep learning-based side-channel analysis. We investigate data augmentation to improve the shift-invariance and, in a more powerful version, ensembles of data augmentation. Our results show that the proposed techniques work very well and improve the attack significantly, even for an order of magnitude.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Krček, Marina ; Wu, Lichao ; Perin, Guilherme ; Picek, Stjepan
Art des Eintrags: Zweitveröffentlichung
Titel: Shift-Invariance Robustness of Convolutional Neural Networks in Side-Channel Analysis
Sprache: Englisch
Publikationsjahr: 12 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 18 Oktober 2024
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematics
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 20
Kollation: 17 Seiten
DOI: 10.26083/tuprints-00028672
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28672
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Convolutional neural networks (CNNs) offer unrivaled performance in profiling side-channel analysis. This claim is corroborated by numerous results where CNNs break targets protected with masking and hiding countermeasures. One hiding countermeasure commonly investigated in related works is desynchronization (misalignment). The conclusions usually state that CNNs can break desynchronization as they are shift-invariant. This paper investigates that claim in more detail and reveals that the situation is more complex. While CNNs have certain shift-invariance, it is insufficient for commonly encountered scenarios in deep learning-based side-channel analysis. We investigate data augmentation to improve the shift-invariance and, in a more powerful version, ensembles of data augmentation. Our results show that the proposed techniques work very well and improve the attack significantly, even for an order of magnitude.

Freie Schlagworte: side-channel analysis, deep learning, misalignment, countermeasures, shift-invariance
ID-Nummer: Artikel-ID: 3279
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-286722
Zusätzliche Informationen:

This article belongs to the Special Issue Applications of Artificial Intelligence to Cryptography

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Systemsicherheit
Hinterlegungsdatum: 12 Nov 2024 13:13
Letzte Änderung: 13 Nov 2024 10:57
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen