TU Darmstadt / ULB / TUbiblio

Symmetric Electron Transfer Coordinates are Intrinsic to Bridged Systems: An ab Initio Treatment of the Creutz–Taube Ion

Šrut, Adam ; Lear, Benjamin J. ; Krewald, Vera (2024)
Symmetric Electron Transfer Coordinates are Intrinsic to Bridged Systems: An ab Initio Treatment of the Creutz–Taube Ion.
In: Angewandte Chemie International Edition, 2024, 63 (31)
doi: 10.26083/tuprints-00028288
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

A long‐standing question in electron transfer research concerns the number and identity of collective nuclear motions that drive electron transfer or localisation. It is well established that these nuclear motions are commonly gathered into a so‐called electron transfer coordinate. In this theoretical study, we demonstrate that both anti‐symmetric and symmetric vibrational motions are intrinsic to bridged systems, and that both are required to explain the characteristic shape of their intervalence charge transfer bands. Using the properties of a two‐state Marcus–Hush model, we identify and quantify these two coordinates as linear combinations of normal modes from ab initio calculations. This quantification gives access to the potential coupling, reorganization energy and curvature of the potential energy surfaces involved in electron transfer, independent of any prior assumptions about the system of interest. We showcase these claims with the Creutz–Taube ion, a prototypical Class III mixed valence complex. We find that the symmetric dimension is responsible for the asymmetric band shape, and trace this back to the offset of the ground and excited state potentials in this dimension. The significance of the symmetric dimension originates from geometry dependent coupling, which in turn is a natural consequence of the well‐established superexchange mechanism. The conceptual connection between the symmetric and anti‐symmetric motions and the superexchange mechanism appears as a general result for bridged systems.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Šrut, Adam ; Lear, Benjamin J. ; Krewald, Vera
Art des Eintrags: Zweitveröffentlichung
Titel: Symmetric Electron Transfer Coordinates are Intrinsic to Bridged Systems: An ab Initio Treatment of the Creutz–Taube Ion
Sprache: Englisch
Publikationsjahr: 12 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 29 Juli 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Angewandte Chemie International Edition
Jahrgang/Volume einer Zeitschrift: 63
(Heft-)Nummer: 31
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00028288
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28288
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

A long‐standing question in electron transfer research concerns the number and identity of collective nuclear motions that drive electron transfer or localisation. It is well established that these nuclear motions are commonly gathered into a so‐called electron transfer coordinate. In this theoretical study, we demonstrate that both anti‐symmetric and symmetric vibrational motions are intrinsic to bridged systems, and that both are required to explain the characteristic shape of their intervalence charge transfer bands. Using the properties of a two‐state Marcus–Hush model, we identify and quantify these two coordinates as linear combinations of normal modes from ab initio calculations. This quantification gives access to the potential coupling, reorganization energy and curvature of the potential energy surfaces involved in electron transfer, independent of any prior assumptions about the system of interest. We showcase these claims with the Creutz–Taube ion, a prototypical Class III mixed valence complex. We find that the symmetric dimension is responsible for the asymmetric band shape, and trace this back to the offset of the ground and excited state potentials in this dimension. The significance of the symmetric dimension originates from geometry dependent coupling, which in turn is a natural consequence of the well‐established superexchange mechanism. The conceptual connection between the symmetric and anti‐symmetric motions and the superexchange mechanism appears as a general result for bridged systems.

Freie Schlagworte: electron transfer, mixed-valent chemistry, quantum chemistry, nuclear dimensions, spectroscopy
ID-Nummer: Artikel-ID: e202404727
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-282886
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Quantenchemie
Hinterlegungsdatum: 12 Nov 2024 13:33
Letzte Änderung: 13 Nov 2024 08:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen