TU Darmstadt / ULB / TUbiblio

Approach to prove the efficiency of the Monte Carlo method combined with the elementary effect method to quantify uncertainty of a beam structure with piezo-elastic supports

Li, Sushan ; Goetz, Benedict ; Schaeffner, Maximilian ; Platz, Roland (2024)
Approach to prove the efficiency of the Monte Carlo method combined with the elementary effect method to quantify uncertainty of a beam structure with piezo-elastic supports.
2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering. Rhodes Island, Greece (15.06.2017-17.06.2017)
doi: 10.26083/tuprints-00028651
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this paper, a new approach is presented to prove the efficiency of the direct Monte Carlo method combined with the Elementary Effect method to quantify structural data uncertainty under uncertain input parameters of a beam structure. Normally, the application of the direct Monte Carlo method requires high computational cost when all input parameters are taken into account. It is proposed to use a combination of the direct Monte Carlo method and the Elementary Effect method for the variance-based sensitivity analysis, named the combined Monte Carlo method. By the application of the Elementary Effect method as a screening method, the truely influential input parameters are identified. Then, the parametric uncertainty is analyzed only under these influential input parameters’ uncertainty by the use of the Monte Carlo method. Through a combination of these two methods, the number of simulations can be significantly reduced due to the reduction of the number of analyzed input parameters.

The novelty of this paper is to investigate the accuracy and the efficiency of this combined approach by the use of a beam structure with piezo-elastic supports for buckling and vibration control as a reference structure. The uncertain structural input parameters are the geometric, material, and stiffness parameters of the piezo-elastic supports. The output variable is the first lateral resonance frequency of the beam structure. Its uncertainty will be analyzed by the application of the combined Monte Carlo method applied for only a few but influential input parameters and will also be analyzed by the application of the direct Monte Carlo method for all input parameters. The results by the two methods will be compared based on the analysis accuracy to estimate the sensitivity of the input parameters on the first lateral resonance frequency and the minimal required number of the simulations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Li, Sushan ; Goetz, Benedict ; Schaeffner, Maximilian ; Platz, Roland
Art des Eintrags: Zweitveröffentlichung
Titel: Approach to prove the efficiency of the Monte Carlo method combined with the elementary effect method to quantify uncertainty of a beam structure with piezo-elastic supports
Sprache: Englisch
Publikationsjahr: 11 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2017
Ort der Erstveröffentlichung: Athens, Greece
Verlag: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece
Buchtitel: Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017)
Kollation: 15 Seiten
Veranstaltungstitel: 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering
Veranstaltungsort: Rhodes Island, Greece
Veranstaltungsdatum: 15.06.2017-17.06.2017
DOI: 10.26083/tuprints-00028651
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28651
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In this paper, a new approach is presented to prove the efficiency of the direct Monte Carlo method combined with the Elementary Effect method to quantify structural data uncertainty under uncertain input parameters of a beam structure. Normally, the application of the direct Monte Carlo method requires high computational cost when all input parameters are taken into account. It is proposed to use a combination of the direct Monte Carlo method and the Elementary Effect method for the variance-based sensitivity analysis, named the combined Monte Carlo method. By the application of the Elementary Effect method as a screening method, the truely influential input parameters are identified. Then, the parametric uncertainty is analyzed only under these influential input parameters’ uncertainty by the use of the Monte Carlo method. Through a combination of these two methods, the number of simulations can be significantly reduced due to the reduction of the number of analyzed input parameters.

The novelty of this paper is to investigate the accuracy and the efficiency of this combined approach by the use of a beam structure with piezo-elastic supports for buckling and vibration control as a reference structure. The uncertain structural input parameters are the geometric, material, and stiffness parameters of the piezo-elastic supports. The output variable is the first lateral resonance frequency of the beam structure. Its uncertainty will be analyzed by the application of the combined Monte Carlo method applied for only a few but influential input parameters and will also be analyzed by the application of the direct Monte Carlo method for all input parameters. The results by the two methods will be compared based on the analysis accuracy to estimate the sensitivity of the input parameters on the first lateral resonance frequency and the minimal required number of the simulations.

Freie Schlagworte: Uncertainty quantification, Monte Carlo method, Elementary Effect method, beam, piezo-elastic support
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-286517
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM)
Hinterlegungsdatum: 11 Nov 2024 10:57
Letzte Änderung: 12 Nov 2024 07:19
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen