TU Darmstadt / ULB / TUbiblio

Exceptional Hardness and Thermal Properties of SiC/(Hf,Ta)C(N)/(B)C Ceramic Composites Derived from Single‐Source Precursor

Bernauer, Jan ; Petry, Nils‐Christian ; Thor, Nathalie ; Kredel, Samuel Aeneas ; Teppala, Dharma Teja ; Galetz, Mathias ; Lepple, Maren ; Pundt, Astrid ; Ionescu, Emanuel ; Riedel, Ralf (2024)
Exceptional Hardness and Thermal Properties of SiC/(Hf,Ta)C(N)/(B)C Ceramic Composites Derived from Single‐Source Precursor.
In: Advanced Engineering Materials, 2024, 26 (17)
doi: 10.26083/tuprints-00028303
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In the present work, monolithic SiC/(Hf₀.₇₅Ta₀.₂₅)C(N)/(B)C ceramic composites are prepared via spark plasma sintering of amorphous SiHfTa(B)CN‐based powders synthesized from single‐source precursors. The as‐sintered ceramic nanocomposites are investigated by X‐ray diffraction, Raman, scanning electron microscopy, and transmission electron microscopy in order to study their microstructure and chemical composition. Furthermore, the thermal conductivity, the thermal expansion, as well as the hardness and Young's moduli of the prepared monolithic samples are determined. The incorporation of boron in the system results in enhanced densification due to decreased porosity and improved distribution of the individual phases in the composite after sintering. These favorable effects also positively influence the thermomechanical properties of the composite. The boron‐modified sample displays a decreased thermal diffusivity and conductivity compared with the boron‐free sample. Additionally, a macro‐hardness obtained by Vickers indentation of 31 GPa is achieved for loads up to 196 N, surpassing the hardness of ultrahard materials like silicon carbide, hafnium carbide, and tantalum carbide as well as their solid solutions. Young's moduli of the composites were analyzed to 405 ± 10 and 277.5 ± 41 GPa for the boron‐containing and boron‐free samples, respectively.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Bernauer, Jan ; Petry, Nils‐Christian ; Thor, Nathalie ; Kredel, Samuel Aeneas ; Teppala, Dharma Teja ; Galetz, Mathias ; Lepple, Maren ; Pundt, Astrid ; Ionescu, Emanuel ; Riedel, Ralf
Art des Eintrags: Zweitveröffentlichung
Titel: Exceptional Hardness and Thermal Properties of SiC/(Hf,Ta)C(N)/(B)C Ceramic Composites Derived from Single‐Source Precursor
Sprache: Englisch
Publikationsjahr: 4 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: September 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Engineering Materials
Jahrgang/Volume einer Zeitschrift: 26
(Heft-)Nummer: 17
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00028303
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28303
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In the present work, monolithic SiC/(Hf₀.₇₅Ta₀.₂₅)C(N)/(B)C ceramic composites are prepared via spark plasma sintering of amorphous SiHfTa(B)CN‐based powders synthesized from single‐source precursors. The as‐sintered ceramic nanocomposites are investigated by X‐ray diffraction, Raman, scanning electron microscopy, and transmission electron microscopy in order to study their microstructure and chemical composition. Furthermore, the thermal conductivity, the thermal expansion, as well as the hardness and Young's moduli of the prepared monolithic samples are determined. The incorporation of boron in the system results in enhanced densification due to decreased porosity and improved distribution of the individual phases in the composite after sintering. These favorable effects also positively influence the thermomechanical properties of the composite. The boron‐modified sample displays a decreased thermal diffusivity and conductivity compared with the boron‐free sample. Additionally, a macro‐hardness obtained by Vickers indentation of 31 GPa is achieved for loads up to 196 N, surpassing the hardness of ultrahard materials like silicon carbide, hafnium carbide, and tantalum carbide as well as their solid solutions. Young's moduli of the composites were analyzed to 405 ± 10 and 277.5 ± 41 GPa for the boron‐containing and boron‐free samples, respectively.

Freie Schlagworte: precursor‐derived ceramics, spark plasma sintering, thermomechanical properties of SiC‐composites
ID-Nummer: Artikel-ID: 2301864
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-283034
Zusätzliche Informationen:

Special Issue: Materials Compounds from Composite Materials for Applications in Extreme Conditions

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
500 Naturwissenschaften und Mathematik > 550 Geowissenschaften
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Geowissenschaften > Fachgebiet Geomaterialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Werkstofftechnik und Ressourcenmanagement
Hinterlegungsdatum: 04 Nov 2024 13:10
Letzte Änderung: 05 Nov 2024 06:47
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen