Zhuo, Fangping ; Zhou, Xiandong ; Dietrich, Felix ; Soleimany, Mehrzad ; Breckner, Patrick ; Groszewicz, Pedro B. ; Xu, Bai‐Xiang ; Buntkowsky, Gerd ; Rödel, Jürgen (2024)
Dislocation Density‐Mediated Functionality in Single‐Crystal BaTiO₃.
In: Advanced Science, 2024, 11 (31)
doi: 10.26083/tuprints-00028302
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Unlike metals where dislocations carry strain singularity but no charge, dislocations in oxide ceramics are characterized by both a strain field and a local charge with a compensating charge envelope. Oxide ceramics with their deliberate engineering and manipulation are pivotal in numerous modern technologies such as semiconductors, superconductors, solar cells, and ferroics. Dislocations facilitate plastic deformation in metals and lead to a monotonous increase in the strength of metallic materials in accordance with the widely recognized Taylor hardening law. However, achieving the objective of tailoring the functionality of oxide ceramics by dislocation density still remains elusive. Here a strategy to imprint dislocations with {100}<100> slip systems and a tenfold change in dislocation density of BaTiO₃ single crystals using high‐temperature uniaxial compression are reported. Through a dislocation density‐based approach, dielectric permittivity, converse piezoelectric coefficient, and alternating current conductivity are tailored, exhibiting a peak at medium dislocation density. Combined with phase‐field simulations and domain wall potential energy analyses, the dislocation‐density‐based design in bulk ferroelectrics is mechanistically rationalized. These findings may provide a new dimension for employing plastic strain engineering to tune the electrical properties of ferroics, potentially paving the way for advancing dislocation technology in functional ceramics.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Zhuo, Fangping ; Zhou, Xiandong ; Dietrich, Felix ; Soleimany, Mehrzad ; Breckner, Patrick ; Groszewicz, Pedro B. ; Xu, Bai‐Xiang ; Buntkowsky, Gerd ; Rödel, Jürgen |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Dislocation Density‐Mediated Functionality in Single‐Crystal BaTiO₃ |
Sprache: | Englisch |
Publikationsjahr: | 4 November 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 21 August 2024 |
Ort der Erstveröffentlichung: | Weinheim |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Science |
Jahrgang/Volume einer Zeitschrift: | 11 |
(Heft-)Nummer: | 31 |
Kollation: | 12 Seiten |
DOI: | 10.26083/tuprints-00028302 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/28302 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Unlike metals where dislocations carry strain singularity but no charge, dislocations in oxide ceramics are characterized by both a strain field and a local charge with a compensating charge envelope. Oxide ceramics with their deliberate engineering and manipulation are pivotal in numerous modern technologies such as semiconductors, superconductors, solar cells, and ferroics. Dislocations facilitate plastic deformation in metals and lead to a monotonous increase in the strength of metallic materials in accordance with the widely recognized Taylor hardening law. However, achieving the objective of tailoring the functionality of oxide ceramics by dislocation density still remains elusive. Here a strategy to imprint dislocations with {100}<100> slip systems and a tenfold change in dislocation density of BaTiO₃ single crystals using high‐temperature uniaxial compression are reported. Through a dislocation density‐based approach, dielectric permittivity, converse piezoelectric coefficient, and alternating current conductivity are tailored, exhibiting a peak at medium dislocation density. Combined with phase‐field simulations and domain wall potential energy analyses, the dislocation‐density‐based design in bulk ferroelectrics is mechanistically rationalized. These findings may provide a new dimension for employing plastic strain engineering to tune the electrical properties of ferroics, potentially paving the way for advancing dislocation technology in functional ceramics. |
Freie Schlagworte: | dislocations, ferroelectrics, functional ceramics, plastic deformation |
ID-Nummer: | Artikel-ID: 2403550 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-283023 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 540 Chemie 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe 07 Fachbereich Chemie 07 Fachbereich Chemie > Eduard Zintl-Institut 07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie |
Hinterlegungsdatum: | 04 Nov 2024 13:14 |
Letzte Änderung: | 05 Nov 2024 06:45 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Dislocation Density‐Mediated Functionality in Single‐Crystal BaTiO₃. (deposited 04 Nov 2024 13:14) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |