TU Darmstadt / ULB / TUbiblio

Dislocation Density‐Mediated Functionality in Single‐Crystal BaTiO₃

Zhuo, Fangping ; Zhou, Xiandong ; Dietrich, Felix ; Soleimany, Mehrzad ; Breckner, Patrick ; Groszewicz, Pedro B. ; Xu, Bai‐Xiang ; Buntkowsky, Gerd ; Rödel, Jürgen (2024)
Dislocation Density‐Mediated Functionality in Single‐Crystal BaTiO₃.
In: Advanced Science, 2024, 11 (31)
doi: 10.26083/tuprints-00028302
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Unlike metals where dislocations carry strain singularity but no charge, dislocations in oxide ceramics are characterized by both a strain field and a local charge with a compensating charge envelope. Oxide ceramics with their deliberate engineering and manipulation are pivotal in numerous modern technologies such as semiconductors, superconductors, solar cells, and ferroics. Dislocations facilitate plastic deformation in metals and lead to a monotonous increase in the strength of metallic materials in accordance with the widely recognized Taylor hardening law. However, achieving the objective of tailoring the functionality of oxide ceramics by dislocation density still remains elusive. Here a strategy to imprint dislocations with {100}<100> slip systems and a tenfold change in dislocation density of BaTiO₃ single crystals using high‐temperature uniaxial compression are reported. Through a dislocation density‐based approach, dielectric permittivity, converse piezoelectric coefficient, and alternating current conductivity are tailored, exhibiting a peak at medium dislocation density. Combined with phase‐field simulations and domain wall potential energy analyses, the dislocation‐density‐based design in bulk ferroelectrics is mechanistically rationalized. These findings may provide a new dimension for employing plastic strain engineering to tune the electrical properties of ferroics, potentially paving the way for advancing dislocation technology in functional ceramics.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Zhuo, Fangping ; Zhou, Xiandong ; Dietrich, Felix ; Soleimany, Mehrzad ; Breckner, Patrick ; Groszewicz, Pedro B. ; Xu, Bai‐Xiang ; Buntkowsky, Gerd ; Rödel, Jürgen
Art des Eintrags: Zweitveröffentlichung
Titel: Dislocation Density‐Mediated Functionality in Single‐Crystal BaTiO₃
Sprache: Englisch
Publikationsjahr: 4 November 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 21 August 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Science
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 31
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00028302
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28302
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Unlike metals where dislocations carry strain singularity but no charge, dislocations in oxide ceramics are characterized by both a strain field and a local charge with a compensating charge envelope. Oxide ceramics with their deliberate engineering and manipulation are pivotal in numerous modern technologies such as semiconductors, superconductors, solar cells, and ferroics. Dislocations facilitate plastic deformation in metals and lead to a monotonous increase in the strength of metallic materials in accordance with the widely recognized Taylor hardening law. However, achieving the objective of tailoring the functionality of oxide ceramics by dislocation density still remains elusive. Here a strategy to imprint dislocations with {100}<100> slip systems and a tenfold change in dislocation density of BaTiO₃ single crystals using high‐temperature uniaxial compression are reported. Through a dislocation density‐based approach, dielectric permittivity, converse piezoelectric coefficient, and alternating current conductivity are tailored, exhibiting a peak at medium dislocation density. Combined with phase‐field simulations and domain wall potential energy analyses, the dislocation‐density‐based design in bulk ferroelectrics is mechanistically rationalized. These findings may provide a new dimension for employing plastic strain engineering to tune the electrical properties of ferroics, potentially paving the way for advancing dislocation technology in functional ceramics.

Freie Schlagworte: dislocations, ferroelectrics, functional ceramics, plastic deformation
ID-Nummer: Artikel-ID: 2403550
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-283023
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Mechanik Funktionaler Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 04 Nov 2024 13:14
Letzte Änderung: 05 Nov 2024 06:45
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen