TU Darmstadt / ULB / TUbiblio

Unlocking electrostrain in plastically deformed barium titanate

Zhuo, Fangping ; Wang, Bo ; Cheng, Long ; Zatterin, Edoardo ; Jiang, Tianshu ; Ni, Fan ; Breckner, Patrick ; Li, Yan ; Guiblin, Nicolas ; Isaia, Daniel ; Luo, Nengneng ; Fulanovic, Lovro ; Molina-Luna, Leopoldo ; Dkhil, Brahim ; Chen, Long-Qing ; Rödel, Jürgen (2024)
Unlocking electrostrain in plastically deformed barium titanate.
In: Advanced Materials
doi: 10.1002/adma.202413713
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*)in piezoelectric materials remains a formidable challenge for advanced actuator applications.Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arraysof ordered{100}<100>dislocationsisproposed.This dislocation engineering yields an intrinsic lock-in steady–state electrostrain of0.69%at a low field of 10kVcm−1 without external stress and an output strain energy density of5.24J cm−3 in single-crystal BaTiO3,outperforming the benchmark piezoceramics and relaxor ferroelectric single-crystals. Additionally, applying a compression stress of 6MPa fully unlocks electrostrains exceeding 1%, yielding aremarkabled33*value over10000pm V−1 and achieving a record-high strain energy density of 11.67J cm−3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X-raydiffraction, is employed to rationalize the observed electrostrain. Phase-field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findingspresent an effective and sustainable strategy for developing high-performance,lead-free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Zhuo, Fangping ; Wang, Bo ; Cheng, Long ; Zatterin, Edoardo ; Jiang, Tianshu ; Ni, Fan ; Breckner, Patrick ; Li, Yan ; Guiblin, Nicolas ; Isaia, Daniel ; Luo, Nengneng ; Fulanovic, Lovro ; Molina-Luna, Leopoldo ; Dkhil, Brahim ; Chen, Long-Qing ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: Unlocking electrostrain in plastically deformed barium titanate
Sprache: Englisch
Publikationsjahr: 31 Oktober 2024
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
DOI: 10.1002/adma.202413713
Kurzbeschreibung (Abstract):

Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*)in piezoelectric materials remains a formidable challenge for advanced actuator applications.Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arraysof ordered{100}<100>dislocationsisproposed.This dislocation engineering yields an intrinsic lock-in steady–state electrostrain of0.69%at a low field of 10kVcm−1 without external stress and an output strain energy density of5.24J cm−3 in single-crystal BaTiO3,outperforming the benchmark piezoceramics and relaxor ferroelectric single-crystals. Additionally, applying a compression stress of 6MPa fully unlocks electrostrains exceeding 1%, yielding aremarkabled33*value over10000pm V−1 and achieving a record-high strain energy density of 11.67J cm−3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X-raydiffraction, is employed to rationalize the observed electrostrain. Phase-field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findingspresent an effective and sustainable strategy for developing high-performance,lead-free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.

ID-Nummer: Artikel-ID: 2413713
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 31 Okt 2024 13:33
Letzte Änderung: 31 Okt 2024 13:39
PPN: 522874975
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen