Zhuo, Fangping ; Wang, Bo ; Cheng, Long ; Zatterin, Edoardo ; Jiang, Tianshu ; Ni, Fan ; Breckner, Patrick ; Li, Yan ; Guiblin, Nicolas ; Isaia, Daniel ; Luo, Nengneng ; Fulanovic, Lovro ; Molina-Luna, Leopoldo ; Dkhil, Brahim ; Chen, Long-Qing ; Rödel, Jürgen (2024)
Unlocking electrostrain in plastically deformed barium titanate.
In: Advanced Materials
doi: 10.1002/adma.202413713
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*)in piezoelectric materials remains a formidable challenge for advanced actuator applications.Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arraysof ordered{100}<100>dislocationsisproposed.This dislocation engineering yields an intrinsic lock-in steady–state electrostrain of0.69%at a low field of 10kVcm−1 without external stress and an output strain energy density of5.24J cm−3 in single-crystal BaTiO3,outperforming the benchmark piezoceramics and relaxor ferroelectric single-crystals. Additionally, applying a compression stress of 6MPa fully unlocks electrostrains exceeding 1%, yielding aremarkabled33*value over10000pm V−1 and achieving a record-high strain energy density of 11.67J cm−3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X-raydiffraction, is employed to rationalize the observed electrostrain. Phase-field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findingspresent an effective and sustainable strategy for developing high-performance,lead-free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Zhuo, Fangping ; Wang, Bo ; Cheng, Long ; Zatterin, Edoardo ; Jiang, Tianshu ; Ni, Fan ; Breckner, Patrick ; Li, Yan ; Guiblin, Nicolas ; Isaia, Daniel ; Luo, Nengneng ; Fulanovic, Lovro ; Molina-Luna, Leopoldo ; Dkhil, Brahim ; Chen, Long-Qing ; Rödel, Jürgen |
Art des Eintrags: | Bibliographie |
Titel: | Unlocking electrostrain in plastically deformed barium titanate |
Sprache: | Englisch |
Publikationsjahr: | 31 Oktober 2024 |
Verlag: | Wiley-VCH |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Advanced Materials |
DOI: | 10.1002/adma.202413713 |
Kurzbeschreibung (Abstract): | Achieving substantial electrostrain alongside a large effective piezoelectric strain coefficient (d33*)in piezoelectric materials remains a formidable challenge for advanced actuator applications.Here, a straightforward approach to enhance these properties by strategically designing the domain structure and controlling the domain switching through the introduction of arraysof ordered{100}<100>dislocationsisproposed.This dislocation engineering yields an intrinsic lock-in steady–state electrostrain of0.69%at a low field of 10kVcm−1 without external stress and an output strain energy density of5.24J cm−3 in single-crystal BaTiO3,outperforming the benchmark piezoceramics and relaxor ferroelectric single-crystals. Additionally, applying a compression stress of 6MPa fully unlocks electrostrains exceeding 1%, yielding aremarkabled33*value over10000pm V−1 and achieving a record-high strain energy density of 11.67J cm−3. Optical and transmission electron microscopy, paired with laboratory and synchrotron X-raydiffraction, is employed to rationalize the observed electrostrain. Phase-field simulations further elucidate the impact of charged dislocations on domain nucleation and domain switching. These findingspresent an effective and sustainable strategy for developing high-performance,lead-free piezoelectric materials without the need for additional chemical elements, offering immense potential for actuator technologies. |
ID-Nummer: | Artikel-ID: 2413713 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Elektronenmikroskopie 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe |
Hinterlegungsdatum: | 31 Okt 2024 13:33 |
Letzte Änderung: | 31 Okt 2024 13:39 |
PPN: | 522874975 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |