TU Darmstadt / ULB / TUbiblio

Advanced friction modelling in cold forging using machine learning

Volz, Stefan ; Launhardt, Jonas ; Groche, Peter (2024)
Advanced friction modelling in cold forging using machine learning.
57th International Cold Forging Group Plenary Meeting Proceeding (ICFG 2024). Busan, South Korea (22.09.2024-25.09.2024)
doi: 10.26083/tuprints-00028589
Konferenzveröffentlichung, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Despite the intensive development of FE simulations for cold forging applications over the last decades, they are still prone to errors due to, among other things, inaccurate material and friction modelling. The use of advanced friction models can reduce the error caused by friction modelling. [1] However, existing models for cold forging are often limited to a specific application and require extensive tribometer testing for parameter determination. This work presents a new method for efficient data collection through time series analysis, which significantly reduces the number of tribometer tests required. The new method also allows the use of deep learning algorithms for friction modelling. Using the new method, five different friction models, including one deep learning model, are trained and implemented in the FE simulation. Using two typical forming processes for validation, it is shown that the use of a feed-forward neural network friction model reduces the relative error of the FE simulation by ~59% compared to simple friction models. Compared to the state of the art method, the time series based data collection approach reduces the necessary experimental testing by 62 %. Furthermore, the advanced friction models presented are not limited to a specific process, but can be used for any type of cold forging simulation.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Volz, Stefan ; Launhardt, Jonas ; Groche, Peter
Art des Eintrags: Erstveröffentlichung
Titel: Advanced friction modelling in cold forging using machine learning
Sprache: Englisch
Publikationsjahr: 30 Oktober 2024
Ort: Busan
Verlag: International Cold Forging Group
Buchtitel: 57th ICFG Plenary Meeting
Veranstaltungstitel: 57th International Cold Forging Group Plenary Meeting Proceeding (ICFG 2024)
Veranstaltungsort: Busan, South Korea
Veranstaltungsdatum: 22.09.2024-25.09.2024
DOI: 10.26083/tuprints-00028589
URL / URN: https://tuprints.ulb.tu-darmstadt.de/28589
Kurzbeschreibung (Abstract):

Despite the intensive development of FE simulations for cold forging applications over the last decades, they are still prone to errors due to, among other things, inaccurate material and friction modelling. The use of advanced friction models can reduce the error caused by friction modelling. [1] However, existing models for cold forging are often limited to a specific application and require extensive tribometer testing for parameter determination. This work presents a new method for efficient data collection through time series analysis, which significantly reduces the number of tribometer tests required. The new method also allows the use of deep learning algorithms for friction modelling. Using the new method, five different friction models, including one deep learning model, are trained and implemented in the FE simulation. Using two typical forming processes for validation, it is shown that the use of a feed-forward neural network friction model reduces the relative error of the FE simulation by ~59% compared to simple friction models. Compared to the state of the art method, the time series based data collection approach reduces the necessary experimental testing by 62 %. Furthermore, the advanced friction models presented are not limited to a specific process, but can be used for any type of cold forging simulation.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-285890
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 600 Technik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 670 Industrielle und handwerkliche Fertigung
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU)
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU) > Forschungsabteilung Tribologie
Hinterlegungsdatum: 30 Okt 2024 13:07
Letzte Änderung: 31 Okt 2024 07:35
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen