TU Darmstadt / ULB / TUbiblio

Leveraging CAM Algorithms for Explaining Medical Semantic Segmentation

Rheude, Tillmann ; Wirtz, Andreas ; Kuijper, Arjan ; Wesarg, Stefan (2024)
Leveraging CAM Algorithms for Explaining Medical Semantic Segmentation.
In: Journal of Machine Learning for Biomedical Imaging, 2
doi: 10.59275/j.melba.2024-ebd3
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Convolutional neural networks (CNNs) achieve prevailing results in segmentation tasks nowadays and represent the state-of-the-art for image-based analysis. However, the under- standing of the accurate decision-making process of a CNN is rather unknown. The research area of explainable artificial intelligence (xAI) primarily revolves around understanding and interpreting this black-box behavior. One way of interpreting a CNN is the use of class ac- tivation maps (CAMs) that represent heatmaps to indicate the importance of image areas for the prediction of the CNN. For classification tasks, a variety of CAM algorithms exist. But for segmentation tasks, only one CAM algorithm for the interpretation of the output of a CNN exist. We propose a transfer between existing classification- and segmentation- based methods for more detailed, explainable, and consistent results which show salient pixels in semantic segmentation tasks. The resulting Seg-HiRes-Grad CAM is an exten- sion of the segmentation-based Seg-Grad CAM with the transfer to the classification-based HiRes CAM. Our method improves the previously-mentioned existing segmentation-based method by adjusting it to recently published classification-based methods. Especially for medical image segmentation, this transfer solves existing explainability disadvantages. The code is available at <a href='https://github.com/TillmannRheude/SegHiResGrad_CAM'>https://github.com/TillmannRheude/SegHiResGrad_CAM</a>

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Rheude, Tillmann ; Wirtz, Andreas ; Kuijper, Arjan ; Wesarg, Stefan
Art des Eintrags: Bibliographie
Titel: Leveraging CAM Algorithms for Explaining Medical Semantic Segmentation
Sprache: Englisch
Publikationsjahr: 1 Oktober 2024
Verlag: Melba editors
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Machine Learning for Biomedical Imaging
Jahrgang/Volume einer Zeitschrift: 2
DOI: 10.59275/j.melba.2024-ebd3
Kurzbeschreibung (Abstract):

Convolutional neural networks (CNNs) achieve prevailing results in segmentation tasks nowadays and represent the state-of-the-art for image-based analysis. However, the under- standing of the accurate decision-making process of a CNN is rather unknown. The research area of explainable artificial intelligence (xAI) primarily revolves around understanding and interpreting this black-box behavior. One way of interpreting a CNN is the use of class ac- tivation maps (CAMs) that represent heatmaps to indicate the importance of image areas for the prediction of the CNN. For classification tasks, a variety of CAM algorithms exist. But for segmentation tasks, only one CAM algorithm for the interpretation of the output of a CNN exist. We propose a transfer between existing classification- and segmentation- based methods for more detailed, explainable, and consistent results which show salient pixels in semantic segmentation tasks. The resulting Seg-HiRes-Grad CAM is an exten- sion of the segmentation-based Seg-Grad CAM with the transfer to the classification-based HiRes CAM. Our method improves the previously-mentioned existing segmentation-based method by adjusting it to recently published classification-based methods. Especially for medical image segmentation, this transfer solves existing explainability disadvantages. The code is available at <a href='https://github.com/TillmannRheude/SegHiResGrad_CAM'>https://github.com/TillmannRheude/SegHiResGrad_CAM</a>

Freie Schlagworte: Deep learning, Medical image processing, Image analysis
Zusätzliche Informationen:

Special Issue iMIMIC 2023

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Mathematisches und angewandtes Visual Computing
Hinterlegungsdatum: 13 Nov 2024 13:09
Letzte Änderung: 13 Nov 2024 13:09
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen