TU Darmstadt / ULB / TUbiblio

Attesting Distributional Properties of Training Data for Machine Learning

Duddu, Vasisht ; Das, Anudeep ; Khayata, Nora ; Yalame, Hossein ; Schneider, Thomas ; Asokan, N. (2024)
Attesting Distributional Properties of Training Data for Machine Learning.
29th European Symposium on Research in Computer Security. Bydgoszcz, Poland (16.09.2024 -20.09.2024)
doi: 10.1007/978-3-031-70879-4_1
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The success of machine learning (ML) has been accompanied by increased concerns about its trustworthiness. Several jurisdictions are preparing ML regulatory frameworks. One such concern is ensuring that model training data has desirable distributional properties for certain sensitive attributes. For example, draft regulations indicate that model trainers are required to show that training datasets have specific distributional properties, such as reflecting the diversity of the population. We propose the novel notion of ML property attestation allowing a prover (e.g., model trainer) to demonstrate relevant properties of an ML model to a verifier (e.g., a customer) while preserving the confidentiality of sensitive data. We focus on the attestation of distributional properties of training data without revealing the data. We present an effective hybrid property attestation combining property inference with cryptographic mechanisms.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Duddu, Vasisht ; Das, Anudeep ; Khayata, Nora ; Yalame, Hossein ; Schneider, Thomas ; Asokan, N.
Art des Eintrags: Bibliographie
Titel: Attesting Distributional Properties of Training Data for Machine Learning
Sprache: Englisch
Publikationsjahr: 5 September 2024
Verlag: Springer
Buchtitel: Computer Security - ESORICS 2024
Reihe: Lecture Notes in Computer Science
Band einer Reihe: 14982
Veranstaltungstitel: 29th European Symposium on Research in Computer Security
Veranstaltungsort: Bydgoszcz, Poland
Veranstaltungsdatum: 16.09.2024 -20.09.2024
DOI: 10.1007/978-3-031-70879-4_1
Kurzbeschreibung (Abstract):

The success of machine learning (ML) has been accompanied by increased concerns about its trustworthiness. Several jurisdictions are preparing ML regulatory frameworks. One such concern is ensuring that model training data has desirable distributional properties for certain sensitive attributes. For example, draft regulations indicate that model trainers are required to show that training datasets have specific distributional properties, such as reflecting the diversity of the population. We propose the novel notion of ML property attestation allowing a prover (e.g., model trainer) to demonstrate relevant properties of an ML model to a verifier (e.g., a customer) while preserving the confidentiality of sensitive data. We focus on the attestation of distributional properties of training data without revealing the data. We present an effective hybrid property attestation combining property inference with cryptographic mechanisms.

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Praktische Kryptographie und Privatheit
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Graduiertenkollegs
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 29 Okt 2024 13:25
Letzte Änderung: 29 Okt 2024 13:27
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen