TU Darmstadt / ULB / TUbiblio

Age of Information Minimization in Status Update Systems with Imperfect Feedback Channel

Pyttel, Friedrich ; De Sombre, Wanja ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja (2024)
Age of Information Minimization in Status Update Systems with Imperfect Feedback Channel.
59th IEEE Internartional Conference on Communications (ICC'24). Denver, USA (09.06.2024 - 13.06.2024)
doi: 10.1109/ICC51166.2024.10622227
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Status Update System (SUS) are monitoring applications of Internet of Things (IoT). They are formed by a sender that monitors a remote process and sends status updates to a receiver over a wireless channel. For successful monitoring, the sender must keep the status updates at the receiver fresh. This freshness is generally measured using the Age of Information (AoI) metric. The aim of the sender is to find a monitoring and transmission strategy that minimizes the AoI. To find the optimal strategy, the sender needs to accurately track the AoI at the receiver, i.e., it needs to perfectly know whether a transmitted status update is correctly received or not. This knowledge can be achieved by using a feedback channel between receiver and sender to send acknowledge (ACK) or negative acknowledge (NACK) messages. However, in real applications, the feedback channel is not perfect, and the transmission of ACK/NACK messages might fail. This means, the monitoring and transmission decisions have to be made under uncertainty about the receiver's AoI. To overcome this challenge, we introduce the concept of a socalled belief distribution and propose a joint monitoring and transmission strategy at the sender based on reinforcement learning. Our approach, termed Belief Learning, exploits the belief distribution to minimize the AoI at the receiver. Through numerical simulations we show that Belief Learning enables the sender to achieve near-optimal performance with respect to the perfect feedback channel case.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Pyttel, Friedrich ; De Sombre, Wanja ; Ortiz Jimenez, Andrea Patricia ; Klein, Anja
Art des Eintrags: Bibliographie
Titel: Age of Information Minimization in Status Update Systems with Imperfect Feedback Channel
Sprache: Englisch
Publikationsjahr: 20 August 2024
Verlag: IEEE
Buchtitel: ICC 2024 - IEEE International Conference on Communications
Veranstaltungstitel: 59th IEEE Internartional Conference on Communications (ICC'24)
Veranstaltungsort: Denver, USA
Veranstaltungsdatum: 09.06.2024 - 13.06.2024
DOI: 10.1109/ICC51166.2024.10622227
Kurzbeschreibung (Abstract):

Status Update System (SUS) are monitoring applications of Internet of Things (IoT). They are formed by a sender that monitors a remote process and sends status updates to a receiver over a wireless channel. For successful monitoring, the sender must keep the status updates at the receiver fresh. This freshness is generally measured using the Age of Information (AoI) metric. The aim of the sender is to find a monitoring and transmission strategy that minimizes the AoI. To find the optimal strategy, the sender needs to accurately track the AoI at the receiver, i.e., it needs to perfectly know whether a transmitted status update is correctly received or not. This knowledge can be achieved by using a feedback channel between receiver and sender to send acknowledge (ACK) or negative acknowledge (NACK) messages. However, in real applications, the feedback channel is not perfect, and the transmission of ACK/NACK messages might fail. This means, the monitoring and transmission decisions have to be made under uncertainty about the receiver's AoI. To overcome this challenge, we introduce the concept of a socalled belief distribution and propose a joint monitoring and transmission strategy at the sender based on reinforcement learning. Our approach, termed Belief Learning, exploits the belief distribution to minimize the AoI at the receiver. Through numerical simulations we show that Belief Learning enables the sender to achieve near-optimal performance with respect to the perfect feedback channel case.

Freie Schlagworte: BMBF Open6GHub, DAAD, emergenCITY, emergenCITY_KOM
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Kommunikationstechnik
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
LOEWE
LOEWE > LOEWE-Zentren
LOEWE > LOEWE-Zentren > emergenCITY
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B3: Adaptionsökonomie
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C1 : Netzzentrische Sicht
Hinterlegungsdatum: 25 Okt 2024 12:49
Letzte Änderung: 25 Okt 2024 12:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen