TU Darmstadt / ULB / TUbiblio

Design of thermomechanical processes for tailored microstructures: Methodology and application to nanocrystalline titanium alloy Ti-13Nb-13Zr (NanoTNZ)

Kluy, Lukas ; Klinge, Lina ; Spiegel, Chrstopher ; Siemers, Carsten ; Groche, Peter (2024)
Design of thermomechanical processes for tailored microstructures: Methodology and application to nanocrystalline titanium alloy Ti-13Nb-13Zr (NanoTNZ).
52nd SME North American Manufacturing Research Conference (NAMRC 52, 2024). Knoxville, Tennessee (17.06.2024 - 21.06.2024)
doi: 10.1016/j.mfglet.2024.09.050
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Thermomechanical processes enable tailoring of material properties and microstructures for advanced products. In medical technology, next generation titanium implants require tailored material properties to improve health and quality of life. However, the interaction correlation between process parameters and material properties poses a major challenge for the design of thermomechanical manufacturing processes. In this paper, we present a methodology for the design of thermomechanical processes to achieve tailored microstructural properties through forming technology and heat treatments. The methodology consists of five systematic steps to address the complexity of multiphysical coupling relationships between temperature, stress, microstructure and alloy composition, and to provide a guideline for effective implementation. It is applied to the production of nanostructured Ti-13Nb-13Zr (NanoTNZ) alloy for dental implants. The designed process of severe plastic deformation, recrystallization treatment and aging lead to nanostructured microstructures smaller than 200 nm. The resulting mechanical properties (UTS > 980 MPa, Young's modulus of 73 GPa) meet the desired goals for improved biomedical implant-bone interactions. The tailored material properties and microstructures of NanoTNZ are therefore highly promising for use as an implant material. The case study demonstrates the importance of a systematic method to manage the complexity of multiphysical coupling relationships in the design of thermomechanical processes to enable tailored microstructures for advanced materials and products.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Kluy, Lukas ; Klinge, Lina ; Spiegel, Chrstopher ; Siemers, Carsten ; Groche, Peter
Art des Eintrags: Bibliographie
Titel: Design of thermomechanical processes for tailored microstructures: Methodology and application to nanocrystalline titanium alloy Ti-13Nb-13Zr (NanoTNZ)
Sprache: Englisch
Publikationsjahr: Oktober 2024
Ort: Amsterdam
Verlag: Elsevier
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Manufacturing Letters
Jahrgang/Volume einer Zeitschrift: 41
Veranstaltungstitel: 52nd SME North American Manufacturing Research Conference (NAMRC 52, 2024)
Veranstaltungsort: Knoxville, Tennessee
Veranstaltungsdatum: 17.06.2024 - 21.06.2024
DOI: 10.1016/j.mfglet.2024.09.050
Kurzbeschreibung (Abstract):

Thermomechanical processes enable tailoring of material properties and microstructures for advanced products. In medical technology, next generation titanium implants require tailored material properties to improve health and quality of life. However, the interaction correlation between process parameters and material properties poses a major challenge for the design of thermomechanical manufacturing processes. In this paper, we present a methodology for the design of thermomechanical processes to achieve tailored microstructural properties through forming technology and heat treatments. The methodology consists of five systematic steps to address the complexity of multiphysical coupling relationships between temperature, stress, microstructure and alloy composition, and to provide a guideline for effective implementation. It is applied to the production of nanostructured Ti-13Nb-13Zr (NanoTNZ) alloy for dental implants. The designed process of severe plastic deformation, recrystallization treatment and aging lead to nanostructured microstructures smaller than 200 nm. The resulting mechanical properties (UTS > 980 MPa, Young's modulus of 73 GPa) meet the desired goals for improved biomedical implant-bone interactions. The tailored material properties and microstructures of NanoTNZ are therefore highly promising for use as an implant material. The case study demonstrates the importance of a systematic method to manage the complexity of multiphysical coupling relationships in the design of thermomechanical processes to enable tailored microstructures for advanced materials and products.

Freie Schlagworte: Thermomechanical processes, Design methodology, Forming technology
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU)
16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU) > Forschungsabteilung Prozessketten und Anlagen
Hinterlegungsdatum: 18 Okt 2024 07:29
Letzte Änderung: 18 Okt 2024 07:29
PPN: 522321011
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen