TU Darmstadt / ULB / TUbiblio

Overview of PerpectiveArg2024 The First Shared Task on Perspective Argument Retrieval

Falk, Neele ; Waldis, Andreas ; Gurevych, Iryna (2024)
Overview of PerpectiveArg2024 The First Shared Task on Perspective Argument Retrieval.
62nd Annual Meeting of the Association for Computational Linguistics. Bangkok, Thailand (11.08.2024 - 16.08.2024)
doi: 10.18653/v1/2024.argmining-1.14
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Argument retrieval is the task of finding relevant arguments for a given query. While existing approaches rely solely on the semantic alignment of queries and arguments, this first shared task on perspective argument retrieval incorporates perspectives during retrieval, ac- counting for latent influences in argumenta- tion. We present a novel multilingual dataset covering demographic and socio-cultural (so- cio) variables, such as age, gender, and politi- cal attitude, representing minority and major- ity groups in society. We distinguish between three scenarios to explore how retrieval systems consider explicitly (in both query and corpus) and implicitly (only in query) formulated per- spectives. This paper provides an overview of this shared task and summarizes the results of the six submitted systems. We find substantial challenges in incorporating perspectivism, especially when aiming for personalization based solely on the text of arguments without explicitly providing socio profiles. Moreover, re- trieval systems tend to be biased towards the majority group but partially mitigate bias for the female gender. While we bootstrap per- spective argument retrieval, further research is essential to optimize retrieval systems to facilitate personalization and reduce polarization.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Falk, Neele ; Waldis, Andreas ; Gurevych, Iryna
Art des Eintrags: Bibliographie
Titel: Overview of PerpectiveArg2024 The First Shared Task on Perspective Argument Retrieval
Sprache: Englisch
Publikationsjahr: 17 August 2024
Verlag: ACL
Buchtitel: ArgMining 2024: The 11th Workshop on Argument Mining-Proceedings of the Workshop
Veranstaltungstitel: 62nd Annual Meeting of the Association for Computational Linguistics
Veranstaltungsort: Bangkok, Thailand
Veranstaltungsdatum: 11.08.2024 - 16.08.2024
DOI: 10.18653/v1/2024.argmining-1.14
URL / URN: https://aclanthology.org/2024.argmining-1.14
Kurzbeschreibung (Abstract):

Argument retrieval is the task of finding relevant arguments for a given query. While existing approaches rely solely on the semantic alignment of queries and arguments, this first shared task on perspective argument retrieval incorporates perspectives during retrieval, ac- counting for latent influences in argumenta- tion. We present a novel multilingual dataset covering demographic and socio-cultural (so- cio) variables, such as age, gender, and politi- cal attitude, representing minority and major- ity groups in society. We distinguish between three scenarios to explore how retrieval systems consider explicitly (in both query and corpus) and implicitly (only in query) formulated per- spectives. This paper provides an overview of this shared task and summarizes the results of the six submitted systems. We find substantial challenges in incorporating perspectivism, especially when aiming for personalization based solely on the text of arguments without explicitly providing socio profiles. Moreover, re- trieval systems tend to be biased towards the majority group but partially mitigate bias for the female gender. While we bootstrap per- spective argument retrieval, further research is essential to optimize retrieval systems to facilitate personalization and reduce polarization.

Zusätzliche Informationen:

The 11th Workshop on Argument Mining 15.09.2024

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung
Hinterlegungsdatum: 17 Okt 2024 12:31
Letzte Änderung: 30 Dez 2024 08:44
PPN: 524974802
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen