Kratz, Maximilian ; Ehmes, Sebastian ; Volle, Marco ; Schürr, Andy
Hrsg.: Schulte, Stefan ; Koldehofe, Boris (2024)
Generating Training Data Sets for Machine Learning Approaches with GIPS.
In: From Multimedia Communications to the Future Internet: Essays Dedicated to Ralf Steinmetz on the Occasion of His Retirement
doi: 10.1007/978-3-031-71874-8_9
Buchkapitel, Bibliographie
Kurzbeschreibung (Abstract)
Machine Learning (ML) and its application is a research area that has become increasingly important, especially in the last decade. ML approaches in the field of supervised learning depend on labeled data sets for their training process. But, in some problem domains, the collection and generation of labeled training data can be hard because, for example, the underlying problem is in general hard to solve algorithmically. This paper proposes a conceptual framework for the generation of labeled training data sets for supervised learning approaches based on the GIPS framework. For this purpose, GIPS combines Graph Transformation (GT) with Integer Linear Programming (ILP) techniques to solve graph-based optimization problems to obtain labels for data points. A prototypical implementation is used to demonstrate the functionality of our solution in the context of a small-scale Virtual Network Embedding (VNE) example. The evaluation of our prototype shows promising results when compared to an optimal ILP-based implementation.
Typ des Eintrags: | Buchkapitel |
---|---|
Erschienen: | 2024 |
Herausgeber: | Schulte, Stefan ; Koldehofe, Boris |
Autor(en): | Kratz, Maximilian ; Ehmes, Sebastian ; Volle, Marco ; Schürr, Andy |
Art des Eintrags: | Bibliographie |
Titel: | Generating Training Data Sets for Machine Learning Approaches with GIPS |
Sprache: | Englisch |
Publikationsjahr: | 13 September 2024 |
Verlag: | Springer |
Buchtitel: | From Multimedia Communications to the Future Internet: Essays Dedicated to Ralf Steinmetz on the Occasion of His Retirement |
Reihe: | Lecture Notes in Computer Science |
Band einer Reihe: | 15200 |
DOI: | 10.1007/978-3-031-71874-8_9 |
Kurzbeschreibung (Abstract): | Machine Learning (ML) and its application is a research area that has become increasingly important, especially in the last decade. ML approaches in the field of supervised learning depend on labeled data sets for their training process. But, in some problem domains, the collection and generation of labeled training data can be hard because, for example, the underlying problem is in general hard to solve algorithmically. This paper proposes a conceptual framework for the generation of labeled training data sets for supervised learning approaches based on the GIPS framework. For this purpose, GIPS combines Graph Transformation (GT) with Integer Linear Programming (ILP) techniques to solve graph-based optimization problems to obtain labels for data points. A prototypical implementation is used to demonstrate the functionality of our solution in the context of a small-scale Virtual Network Embedding (VNE) example. The evaluation of our prototype shows promising results when compared to an optimal ILP-based implementation. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Echtzeitsysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik > Teilprojekt A1: Modellierung |
Hinterlegungsdatum: | 16 Okt 2024 08:03 |
Letzte Änderung: | 16 Okt 2024 08:03 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |