Zhao, Tian ; Schneider-Jung, Fabio ; Linn, Joachim ; Müller, Ralf (2024)
Simulation and parameterization of nonlinear elastic behavior of cables.
In: Multibody System Dynamics
doi: 10.1007/s11044-024-10008-2
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
This work contributes to the simulation, modeling, and characterization of nonlinear elastic bending behavior within the framework of geometrically nonlinear rod models. These models often assume a linear constitutive bending behavior, which is not sufficient for some complex flexible slender structures. In general, nonlinear elastic behavior often coexists with inelastic behavior. In this work, we incorporate the inelastic deformation into the rod model using reference curvatures. We present an algorithmic approach for simulating the nonlinear elastic bending behavior, which is based on the theory of Cosserat rods, where the static equilibrium is calculated by minimizing the linear elastic energy. For this algorithmic approach, in each iteration the static equilibrium is obtained by minimizing the potential energy with locally constant algorithmic bending stiffness values. These constants are updated according to the given nonlinear elastic constitutive law until the state of the rod converges. To determine the nonlinear elastic constitutive bending behavior of the flexible slender structures (such as cables) from the measured values, we formulate an inverse problem. By solving it we aim to determine a curvature-dependent bending stiffness characteristic and the reference curvatures using the given measured values. We first provide examples using virtual bending measurements, followed by the application of bending measurements on real cables. Solving the inverse problem yields physically plausible results.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Zhao, Tian ; Schneider-Jung, Fabio ; Linn, Joachim ; Müller, Ralf |
Art des Eintrags: | Bibliographie |
Titel: | Simulation and parameterization of nonlinear elastic behavior of cables |
Sprache: | Englisch |
Publikationsjahr: | Juli 2024 |
Ort: | Dordrecht |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Multibody System Dynamics |
Kollation: | 20 Seiten |
DOI: | 10.1007/s11044-024-10008-2 |
Kurzbeschreibung (Abstract): | This work contributes to the simulation, modeling, and characterization of nonlinear elastic bending behavior within the framework of geometrically nonlinear rod models. These models often assume a linear constitutive bending behavior, which is not sufficient for some complex flexible slender structures. In general, nonlinear elastic behavior often coexists with inelastic behavior. In this work, we incorporate the inelastic deformation into the rod model using reference curvatures. We present an algorithmic approach for simulating the nonlinear elastic bending behavior, which is based on the theory of Cosserat rods, where the static equilibrium is calculated by minimizing the linear elastic energy. For this algorithmic approach, in each iteration the static equilibrium is obtained by minimizing the potential energy with locally constant algorithmic bending stiffness values. These constants are updated according to the given nonlinear elastic constitutive law until the state of the rod converges. To determine the nonlinear elastic constitutive bending behavior of the flexible slender structures (such as cables) from the measured values, we formulate an inverse problem. By solving it we aim to determine a curvature-dependent bending stiffness characteristic and the reference curvatures using the given measured values. We first provide examples using virtual bending measurements, followed by the application of bending measurements on real cables. Solving the inverse problem yields physically plausible results. |
Fachbereich(e)/-gebiet(e): | 13 Fachbereich Bau- und Umweltingenieurwissenschaften 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik 13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik |
Hinterlegungsdatum: | 15 Okt 2024 08:09 |
Letzte Änderung: | 16 Okt 2024 10:28 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |