TU Darmstadt / ULB / TUbiblio

Costream: Learned Cost Models for Operator Placement in Edge-Cloud Environments

Heinrich, Roman ; Binnig, Carsten ; Kornmayer, Harald ; Luthra, Manisha (2024)
Costream: Learned Cost Models for Operator Placement in Edge-Cloud Environments.
40th IEEE International Conference on Data Engineering (ICDE 2024). Utrecht, The Netherlands (13.05.2024 - 16.05.2024)
doi: 10.1109/ICDE60146.2024.00015
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

In this work, we present Costream, a novel learned cost model for Distributed Stream Processing Systems that provides accurate predictions of the execution costs of a streaming query in an edge-cloud environment. The cost model can be used to find an initial placement of operators across heterogeneous hardware, which is particularly important in these environments. In our evaluation, we demonstrate that Costream can produce highly accurate cost estimates for the initial operator placement and even generalize to unseen placements, queries, and hardware. When using Costream to optimize the placements of streaming operators, a median speedup of around 21 × can be achieved compared to baselines.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2024
Autor(en): Heinrich, Roman ; Binnig, Carsten ; Kornmayer, Harald ; Luthra, Manisha
Art des Eintrags: Bibliographie
Titel: Costream: Learned Cost Models for Operator Placement in Edge-Cloud Environments
Sprache: Englisch
Publikationsjahr: 23 Juli 2024
Verlag: IEEE
Buchtitel: Proceedings: 2024 IEEE 40th International Conference on Data Engineering
Veranstaltungstitel: 40th IEEE International Conference on Data Engineering (ICDE 2024)
Veranstaltungsort: Utrecht, The Netherlands
Veranstaltungsdatum: 13.05.2024 - 16.05.2024
DOI: 10.1109/ICDE60146.2024.00015
Kurzbeschreibung (Abstract):

In this work, we present Costream, a novel learned cost model for Distributed Stream Processing Systems that provides accurate predictions of the execution costs of a streaming query in an edge-cloud environment. The cost model can be used to find an initial placement of operators across heterogeneous hardware, which is particularly important in these environments. In our evaluation, we demonstrate that Costream can produce highly accurate cost estimates for the initial operator placement and even generalize to unseen placements, queries, and hardware. When using Costream to optimize the placements of streaming operators, a median speedup of around 21 × can be achieved compared to baselines.

Freie Schlagworte: Costs, Accuracy, Predictive models, Data engineering, Hardware, Data models, distributed stream processing, operator placement, graph neural networks, edge-cloud, IoT, zero-shot learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Data and AI Systems
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > C: Kommunikationsmechanismen > Teilprojekt C2: Informationszentrische Sicht
Hinterlegungsdatum: 11 Okt 2024 12:49
Letzte Änderung: 11 Okt 2024 12:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen