Linne, Marius ; Ade, Dominik ; Eitenmüller, Johannes ; Leichtfuss, Sebastian ; Schiffer, Heinz-Peter ; Lyko, Christoph ; Schmid, Gregor (2023)
Investigation of the aerodynamic interaction between rotor and second stator in the large scale turbine rig.
ASME Turbo Expo 2023. Boston, Massachusetts, USA (26.06.2023 - 30.06.2023)
doi: 10.1115/GT2023-101246
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
This paper presents the results of an investigation of two different interface modeling approaches for Computational Fluid Dynamics in turbomachinery and their influence on the second stator aerodynamics in the 1.5-stage Large Scale Turbine Rig. Highly accurate five-hole probe data as well as oil flow visualizations are used to investigate the aerodynamics within the second stator passage and to validate the numerical results. While unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations appear to be a better qualitative representation of the second stator aerodynamic experiments, the steady-state (RANS) simulation predicts a turbine efficiency that is closer to the experimental data. In both approaches, the boundary conditions, computational domain and turbulence parameters are kept the same. The key difference between the two simulations is the resolution of time and hence unsteady effects. The RANS approach uses a Mixing-Plane interface between stationary and rotating reference frames. Here, unsteady effects of blade row interaction are neglected by mixing flow quantities in the circumferential direction. This affects the development and propagation of the vortex system in the downstream blade row. To account for effects of rotor-stator-interaction and reduce modeling errors, more expensive unsteady simulations are used. In the rotor exit plane, the URANS simulation shows a better match with experimental data, which theoretically should be the more accurate inlet condition for the downstream second stator. Here, unsteady interactions between the vortex systems of the rotor and the second stator lead to an overprediction of the losses in the second stator passage in the URANS compared to the RANS case. Therefore, the overall efficiency is more accurately predicted by RANS.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2023 |
Autor(en): | Linne, Marius ; Ade, Dominik ; Eitenmüller, Johannes ; Leichtfuss, Sebastian ; Schiffer, Heinz-Peter ; Lyko, Christoph ; Schmid, Gregor |
Art des Eintrags: | Bibliographie |
Titel: | Investigation of the aerodynamic interaction between rotor and second stator in the large scale turbine rig |
Sprache: | Englisch |
Publikationsjahr: | Juni 2023 |
Ort: | New York |
Verlag: | ASME |
Buchtitel: | Turbo Expo: power for land, sea, and air. Volume 13B: Turbomachinery — axial flow turbine aerodynamics |
Veranstaltungstitel: | ASME Turbo Expo 2023 |
Veranstaltungsort: | Boston, Massachusetts, USA |
Veranstaltungsdatum: | 26.06.2023 - 30.06.2023 |
DOI: | 10.1115/GT2023-101246 |
Kurzbeschreibung (Abstract): | This paper presents the results of an investigation of two different interface modeling approaches for Computational Fluid Dynamics in turbomachinery and their influence on the second stator aerodynamics in the 1.5-stage Large Scale Turbine Rig. Highly accurate five-hole probe data as well as oil flow visualizations are used to investigate the aerodynamics within the second stator passage and to validate the numerical results. While unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations appear to be a better qualitative representation of the second stator aerodynamic experiments, the steady-state (RANS) simulation predicts a turbine efficiency that is closer to the experimental data. In both approaches, the boundary conditions, computational domain and turbulence parameters are kept the same. The key difference between the two simulations is the resolution of time and hence unsteady effects. The RANS approach uses a Mixing-Plane interface between stationary and rotating reference frames. Here, unsteady effects of blade row interaction are neglected by mixing flow quantities in the circumferential direction. This affects the development and propagation of the vortex system in the downstream blade row. To account for effects of rotor-stator-interaction and reduce modeling errors, more expensive unsteady simulations are used. In the rotor exit plane, the URANS simulation shows a better match with experimental data, which theoretically should be the more accurate inlet condition for the downstream second stator. Here, unsteady interactions between the vortex systems of the rotor and the second stator lead to an overprediction of the losses in the second stator passage in the URANS compared to the RANS case. Therefore, the overall efficiency is more accurately predicted by RANS. |
ID-Nummer: | Paper-ID: GT2023-101246 |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) 16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Numerische Simulation 16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Turbine 16 Fachbereich Maschinenbau > Rolls-Royce University Technology Center Combustor Turbine Interaction (UTC) Zentrale Einrichtungen Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner |
Hinterlegungsdatum: | 09 Okt 2024 09:55 |
Letzte Änderung: | 10 Okt 2024 12:05 |
PPN: | 52208883X |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |