TU Darmstadt / ULB / TUbiblio

Investigation of the aerodynamic interaction between rotor and second stator in the large scale turbine rig

Linne, Marius ; Ade, Dominik ; Eitenmüller, Johannes ; Leichtfuss, Sebastian ; Schiffer, Heinz-Peter ; Lyko, Christoph ; Schmid, Gregor (2023)
Investigation of the aerodynamic interaction between rotor and second stator in the large scale turbine rig.
ASME Turbo Expo 2023. Boston, Massachusetts, USA (26.06.2023 - 30.06.2023)
doi: 10.1115/GT2023-101246
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

This paper presents the results of an investigation of two different interface modeling approaches for Computational Fluid Dynamics in turbomachinery and their influence on the second stator aerodynamics in the 1.5-stage Large Scale Turbine Rig. Highly accurate five-hole probe data as well as oil flow visualizations are used to investigate the aerodynamics within the second stator passage and to validate the numerical results. While unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations appear to be a better qualitative representation of the second stator aerodynamic experiments, the steady-state (RANS) simulation predicts a turbine efficiency that is closer to the experimental data. In both approaches, the boundary conditions, computational domain and turbulence parameters are kept the same. The key difference between the two simulations is the resolution of time and hence unsteady effects. The RANS approach uses a Mixing-Plane interface between stationary and rotating reference frames. Here, unsteady effects of blade row interaction are neglected by mixing flow quantities in the circumferential direction. This affects the development and propagation of the vortex system in the downstream blade row. To account for effects of rotor-stator-interaction and reduce modeling errors, more expensive unsteady simulations are used. In the rotor exit plane, the URANS simulation shows a better match with experimental data, which theoretically should be the more accurate inlet condition for the downstream second stator. Here, unsteady interactions between the vortex systems of the rotor and the second stator lead to an overprediction of the losses in the second stator passage in the URANS compared to the RANS case. Therefore, the overall efficiency is more accurately predicted by RANS.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2023
Autor(en): Linne, Marius ; Ade, Dominik ; Eitenmüller, Johannes ; Leichtfuss, Sebastian ; Schiffer, Heinz-Peter ; Lyko, Christoph ; Schmid, Gregor
Art des Eintrags: Bibliographie
Titel: Investigation of the aerodynamic interaction between rotor and second stator in the large scale turbine rig
Sprache: Englisch
Publikationsjahr: Juni 2023
Ort: New York
Verlag: ASME
Buchtitel: Turbo Expo: power for land, sea, and air. Volume 13B: Turbomachinery — axial flow turbine aerodynamics
Veranstaltungstitel: ASME Turbo Expo 2023
Veranstaltungsort: Boston, Massachusetts, USA
Veranstaltungsdatum: 26.06.2023 - 30.06.2023
DOI: 10.1115/GT2023-101246
Kurzbeschreibung (Abstract):

This paper presents the results of an investigation of two different interface modeling approaches for Computational Fluid Dynamics in turbomachinery and their influence on the second stator aerodynamics in the 1.5-stage Large Scale Turbine Rig. Highly accurate five-hole probe data as well as oil flow visualizations are used to investigate the aerodynamics within the second stator passage and to validate the numerical results. While unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations appear to be a better qualitative representation of the second stator aerodynamic experiments, the steady-state (RANS) simulation predicts a turbine efficiency that is closer to the experimental data. In both approaches, the boundary conditions, computational domain and turbulence parameters are kept the same. The key difference between the two simulations is the resolution of time and hence unsteady effects. The RANS approach uses a Mixing-Plane interface between stationary and rotating reference frames. Here, unsteady effects of blade row interaction are neglected by mixing flow quantities in the circumferential direction. This affects the development and propagation of the vortex system in the downstream blade row. To account for effects of rotor-stator-interaction and reduce modeling errors, more expensive unsteady simulations are used. In the rotor exit plane, the URANS simulation shows a better match with experimental data, which theoretically should be the more accurate inlet condition for the downstream second stator. Here, unsteady interactions between the vortex systems of the rotor and the second stator lead to an overprediction of the losses in the second stator passage in the URANS compared to the RANS case. Therefore, the overall efficiency is more accurately predicted by RANS.

ID-Nummer: Paper-ID: GT2023-101246
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR)
16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Numerische Simulation
16 Fachbereich Maschinenbau > Fachgebiet für Gasturbinen, Luft- und Raumfahrtantriebe (GLR) > Turbine
16 Fachbereich Maschinenbau > Rolls-Royce University Technology Center Combustor Turbine Interaction (UTC)
Zentrale Einrichtungen
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ)
Zentrale Einrichtungen > Hochschulrechenzentrum (HRZ) > Hochleistungsrechner
Hinterlegungsdatum: 09 Okt 2024 09:55
Letzte Änderung: 10 Okt 2024 12:05
PPN: 52208883X
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen