TU Darmstadt / ULB / TUbiblio

Numerical Invenstigation of Effusion Cooling Air Influence on the CO Emissions for a Single-Sector Aero-Engine Model Combustor

Recio Balmaseda, Sandra ; Karpowski, Tim Jeremy Patrick ; Nicolai, Hendrik ; Koob, Philipp ; Greifenstein, Max ; Dreizler, Andreas ; Hasse, Christian (2024)
Numerical Invenstigation of Effusion Cooling Air Influence on the CO Emissions for a Single-Sector Aero-Engine Model Combustor.
In: Journal of Engineering for Gas Turbines and Power, 146 (12)
doi: 10.1115/1.4066159
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Stricter aviation emissions regulations have led to the desire for lean-premixed-vaporized combustors over rich-quench-lean burners. While this operation mode is beneficial for reducing NOx and particulate emissions, the interaction of the flame and hot exhaust gases with the cooling flow results in increased CO emissions. Predicting CO in computational fluid dynamics (CFD) simulations remains challenging. To assess current model performance under practically relevant conditions, Large- Eddy Simulation (LES) of a lab-scale effusion cooling test rig is performed. Flamelet-based manifolds, in combination with the Artificial Thickened Flame (ATF) approach, are utilized to model the Turbulence-Chemistry Interaction (TCI) in the test-rig with detailed chemical kinetics at reduced computational costs. Heat losses are considered via exhaust gas recirculation (EGR). Local transport effects in CO emissions are included through an additional transport equation. Additionally, a Conjugate Heat Transfer (CHT) simulation is performed for good estimations of the thermal boundary conditions. Extensive validation of this comprehensive model is conducted using the available experimental dataset for the studied configuration. Subsequently, model sensitivities for predicting CO are assessed, including the progress variable definition and the formulation of the CO source term in the corresponding transport equation. To investigate the flame thickening influence in the calculated CO, an ATF-postprocessing correction is further developed. Integrating multiple sophisticated pollutant submodels and evaluating their sensitivity offers insights for future investigations into modeling CO emissions in aero-engines and stationary gas turbines.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Recio Balmaseda, Sandra ; Karpowski, Tim Jeremy Patrick ; Nicolai, Hendrik ; Koob, Philipp ; Greifenstein, Max ; Dreizler, Andreas ; Hasse, Christian
Art des Eintrags: Bibliographie
Titel: Numerical Invenstigation of Effusion Cooling Air Influence on the CO Emissions for a Single-Sector Aero-Engine Model Combustor
Sprache: Englisch
Publikationsjahr: 6 August 2024
Ort: New York
Verlag: ASME
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Engineering for Gas Turbines and Power
Jahrgang/Volume einer Zeitschrift: 146
(Heft-)Nummer: 12
Kollation: 12 Seiten
DOI: 10.1115/1.4066159
Zugehörige Links:
Kurzbeschreibung (Abstract):

Stricter aviation emissions regulations have led to the desire for lean-premixed-vaporized combustors over rich-quench-lean burners. While this operation mode is beneficial for reducing NOx and particulate emissions, the interaction of the flame and hot exhaust gases with the cooling flow results in increased CO emissions. Predicting CO in computational fluid dynamics (CFD) simulations remains challenging. To assess current model performance under practically relevant conditions, Large- Eddy Simulation (LES) of a lab-scale effusion cooling test rig is performed. Flamelet-based manifolds, in combination with the Artificial Thickened Flame (ATF) approach, are utilized to model the Turbulence-Chemistry Interaction (TCI) in the test-rig with detailed chemical kinetics at reduced computational costs. Heat losses are considered via exhaust gas recirculation (EGR). Local transport effects in CO emissions are included through an additional transport equation. Additionally, a Conjugate Heat Transfer (CHT) simulation is performed for good estimations of the thermal boundary conditions. Extensive validation of this comprehensive model is conducted using the available experimental dataset for the studied configuration. Subsequently, model sensitivities for predicting CO are assessed, including the progress variable definition and the formulation of the CO source term in the corresponding transport equation. To investigate the flame thickening influence in the calculated CO, an ATF-postprocessing correction is further developed. Integrating multiple sophisticated pollutant submodels and evaluating their sensitivity offers insights for future investigations into modeling CO emissions in aero-engines and stationary gas turbines.

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
16 Fachbereich Maschinenbau > Fachgebiet Reaktive Strömungen und Messtechnik (RSM)
Hinterlegungsdatum: 04 Okt 2024 08:34
Letzte Änderung: 17 Okt 2024 09:34
PPN: 522292291
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen