TU Darmstadt / ULB / TUbiblio

Magnetorotational Explosion of a Massive Star Supported by Neutrino Heating in General Relativistic Three-dimensional Simulations

Kuroda, Takami ; Arcones, Almudena ; Takiwaki, Tomoya ; Kotake, Kei (2024)
Magnetorotational Explosion of a Massive Star Supported by Neutrino Heating in General Relativistic Three-dimensional Simulations.
In: The Astrophysical Journal, 2020, 896 (2)
doi: 10.26083/tuprints-00020512
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We present results of three-dimensional (3D), radiation-magnetohydrodynamics (MHD) simulations of core-collapse supernovae in full general relativity (GR) with spectral neutrino transport. In order to study the effects of the progenitor’s rotation and magnetic fields, we compute three models, where the precollapse rotation rate and magnetic fields are included parametrically to a 20 M⊙ star. While we find no shock revival in our two nonmagnetized models during our simulation times (∼500 ms after bounce), the magnetorotational (MR) driven shock expansion immediately initiates after bounce in our rapidly rotating and strongly magnetized model. We show that the expansion of the MR-driven flows toward the polar directions is predominantly driven by the magnetic pressure, whereas the shock expansion toward the equatorial direction is supported by neutrino heating. Our detailed analysis indicates that the growth of the so-called kink instability may hinder the collimation of jets, resulting in the formation of broader outflows. Furthermore, we find a dipole emission of lepton number, only in the MR explosion model, whose asymmetry is consistent with the explosion morphology. Although it is similar to the lepton number emission self-sustained asymmetry (LESA), our analysis shows that the dipole emission occurs not from the proto–neutron star convection zone but from above the neutrino sphere, indicating that it is not associated with the LESA. We also report several unique neutrino signatures, which are significantly dependent on both the time and the viewing angle, if observed, possibly providing rich information regarding the onset of the MR-driven explosion.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kuroda, Takami ; Arcones, Almudena ; Takiwaki, Tomoya ; Kotake, Kei
Art des Eintrags: Zweitveröffentlichung
Titel: Magnetorotational Explosion of a Massive Star Supported by Neutrino Heating in General Relativistic Three-dimensional Simulations
Sprache: Englisch
Publikationsjahr: 2 Oktober 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 20 Juni 2020
Ort der Erstveröffentlichung: London
Verlag: The American Astronomical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: The Astrophysical Journal
Jahrgang/Volume einer Zeitschrift: 896
(Heft-)Nummer: 2
Kollation: 18 Seiten
DOI: 10.26083/tuprints-00020512
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20512
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We present results of three-dimensional (3D), radiation-magnetohydrodynamics (MHD) simulations of core-collapse supernovae in full general relativity (GR) with spectral neutrino transport. In order to study the effects of the progenitor’s rotation and magnetic fields, we compute three models, where the precollapse rotation rate and magnetic fields are included parametrically to a 20 M⊙ star. While we find no shock revival in our two nonmagnetized models during our simulation times (∼500 ms after bounce), the magnetorotational (MR) driven shock expansion immediately initiates after bounce in our rapidly rotating and strongly magnetized model. We show that the expansion of the MR-driven flows toward the polar directions is predominantly driven by the magnetic pressure, whereas the shock expansion toward the equatorial direction is supported by neutrino heating. Our detailed analysis indicates that the growth of the so-called kink instability may hinder the collimation of jets, resulting in the formation of broader outflows. Furthermore, we find a dipole emission of lepton number, only in the MR explosion model, whose asymmetry is consistent with the explosion morphology. Although it is similar to the lepton number emission self-sustained asymmetry (LESA), our analysis shows that the dipole emission occurs not from the proto–neutron star convection zone but from above the neutrino sphere, indicating that it is not associated with the LESA. We also report several unique neutrino signatures, which are significantly dependent on both the time and the viewing angle, if observed, possibly providing rich information regarding the onset of the MR-driven explosion.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-205128
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 520 Astronomie, Kartographie
500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Kernphysik
05 Fachbereich Physik > Institut für Kernphysik > Theoretische Kernphysik
05 Fachbereich Physik > Institut für Kernphysik > Theoretische Kernphysik > Theoretische nukleare Astrophysik
Hinterlegungsdatum: 02 Okt 2024 11:58
Letzte Änderung: 11 Okt 2024 15:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen