Recio Balmaseda, Sandra ; Karpowski, Tim Jeremy Patrick ; Nicolai, Hendrik ; Koob, Philipp ; Greifenstein, Max ; Dreizler, Andreas ; Hasse, Christian (2024)
Numerical Invenstigation of Effusion Cooling Air Influence on the CO Emissions for a Single-Sector Aero-Engine Model Combustor.
In: Journal of Engineering for Gas Turbines and Power, 2024, 146 (12)
doi: 10.26083/tuprints-00028126
Artikel, Zweitveröffentlichung, Postprint
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Stricter aviation emissions regulations have led to the desire for lean-premixed-vaporized combustors over rich-quench-lean burners. While this operation mode is beneficial for reducing NOx and particulate emissions, the interaction of the flame and hot exhaust gases with the cooling flow results in increased CO emissions. Predicting CO in computational fluid dynamics (CFD) simulations remains challenging. To assess current model performance under practically relevant conditions, Large- Eddy Simulation (LES) of a lab-scale effusion cooling test rig is performed. Flamelet-based manifolds, in combination with the Artificial Thickened Flame (ATF) approach, are utilized to model the Turbulence-Chemistry Interaction (TCI) in the test-rig with detailed chemical kinetics at reduced computational costs. Heat losses are considered via exhaust gas recirculation (EGR). Local transport effects in CO emissions are included through an additional transport equation. Additionally, a Conjugate Heat Transfer (CHT) simulation is performed for good estimations of the thermal boundary conditions. Extensive validation of this comprehensive model is conducted using the available experimental dataset for the studied configuration. Subsequently, model sensitivities for predicting CO are assessed, including the progress variable definition and the formulation of the CO source term in the corresponding transport equation. To investigate the flame thickening influence in the calculated CO, an ATF-postprocessing correction is further developed. Integrating multiple sophisticated pollutant submodels and evaluating their sensitivity offers insights for future investigations into modeling CO emissions in aero-engines and stationary gas turbines.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Recio Balmaseda, Sandra ; Karpowski, Tim Jeremy Patrick ; Nicolai, Hendrik ; Koob, Philipp ; Greifenstein, Max ; Dreizler, Andreas ; Hasse, Christian |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Numerical Invenstigation of Effusion Cooling Air Influence on the CO Emissions for a Single-Sector Aero-Engine Model Combustor |
Sprache: | Englisch |
Publikationsjahr: | 1 Oktober 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 6 August 2024 |
Ort der Erstveröffentlichung: | New York |
Verlag: | ASME |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of Engineering for Gas Turbines and Power |
Jahrgang/Volume einer Zeitschrift: | 146 |
(Heft-)Nummer: | 12 |
Kollation: | 12 Seiten |
DOI: | 10.26083/tuprints-00028126 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/28126 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Stricter aviation emissions regulations have led to the desire for lean-premixed-vaporized combustors over rich-quench-lean burners. While this operation mode is beneficial for reducing NOx and particulate emissions, the interaction of the flame and hot exhaust gases with the cooling flow results in increased CO emissions. Predicting CO in computational fluid dynamics (CFD) simulations remains challenging. To assess current model performance under practically relevant conditions, Large- Eddy Simulation (LES) of a lab-scale effusion cooling test rig is performed. Flamelet-based manifolds, in combination with the Artificial Thickened Flame (ATF) approach, are utilized to model the Turbulence-Chemistry Interaction (TCI) in the test-rig with detailed chemical kinetics at reduced computational costs. Heat losses are considered via exhaust gas recirculation (EGR). Local transport effects in CO emissions are included through an additional transport equation. Additionally, a Conjugate Heat Transfer (CHT) simulation is performed for good estimations of the thermal boundary conditions. Extensive validation of this comprehensive model is conducted using the available experimental dataset for the studied configuration. Subsequently, model sensitivities for predicting CO are assessed, including the progress variable definition and the formulation of the CO source term in the corresponding transport equation. To investigate the flame thickening influence in the calculated CO, an ATF-postprocessing correction is further developed. Integrating multiple sophisticated pollutant submodels and evaluating their sensitivity offers insights for future investigations into modeling CO emissions in aero-engines and stationary gas turbines. |
Status: | Postprint |
URN: | urn:nbn:de:tuda-tuprints-281264 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS) 16 Fachbereich Maschinenbau > Fachgebiet Reaktive Strömungen und Messtechnik (RSM) |
Hinterlegungsdatum: | 01 Okt 2024 12:39 |
Letzte Änderung: | 04 Okt 2024 08:33 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Numerical Invenstigation of Effusion Cooling Air Influence on the CO Emissions for a Single-Sector Aero-Engine Model Combustor. (deposited 01 Okt 2024 12:39) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |