TU Darmstadt / ULB / TUbiblio

Consistent Euler–Bernoulli beam theory in statics for gradient elasticity based on Laplacians of stress and strain

Broese, Carsten ; Tsakmakis, Charalampos ; Üngör, Özer (2024)
Consistent Euler–Bernoulli beam theory in statics for gradient elasticity based on Laplacians of stress and strain.
In: Mathematics and Mechanics of Solids, 29 (1)
doi: 10.1177/10812865231177372
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The Euler–Bernoulli beam bending theory in engineering mechanics assumes that the material behavior is isotropic elastic and that plane cross sections remain plane and rigid. It is well-known that this theory suffers from inconsistencies that, e.g., the shear strain is always vanishing, whereas the shear stress does not vanish. In recent work, consistent Euler–Bernoulli beam theories in classical and explicit gradient elasticities were accomplished by assuming the constitutive response to be anisotropic elastic, subject to internal constraints. This approach is extended in the present paper to get consistent Euler–Bernoulli beam theory for gradient elasticity based on Laplacians of stress and strain. The developed beam theory is employed to discuss bending of cantilever beams.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Broese, Carsten ; Tsakmakis, Charalampos ; Üngör, Özer
Art des Eintrags: Bibliographie
Titel: Consistent Euler–Bernoulli beam theory in statics for gradient elasticity based on Laplacians of stress and strain
Sprache: Englisch
Publikationsjahr: Januar 2024
Ort: Thousand Oaks, California, USA
Verlag: SAGE Publications
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematics and Mechanics of Solids
Jahrgang/Volume einer Zeitschrift: 29
(Heft-)Nummer: 1
DOI: 10.1177/10812865231177372
Zugehörige Links:
Kurzbeschreibung (Abstract):

The Euler–Bernoulli beam bending theory in engineering mechanics assumes that the material behavior is isotropic elastic and that plane cross sections remain plane and rigid. It is well-known that this theory suffers from inconsistencies that, e.g., the shear strain is always vanishing, whereas the shear stress does not vanish. In recent work, consistent Euler–Bernoulli beam theories in classical and explicit gradient elasticities were accomplished by assuming the constitutive response to be anisotropic elastic, subject to internal constraints. This approach is extended in the present paper to get consistent Euler–Bernoulli beam theory for gradient elasticity based on Laplacians of stress and strain. The developed beam theory is employed to discuss bending of cantilever beams.

Freie Schlagworte: Consistent Euler–Bernoulli beam theory, implicit gradient elasticity, constitutive law based on Laplacians of stress and strain, bending of cantilever beam, limiting responses
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Kontinuumsmechanik
Hinterlegungsdatum: 02 Okt 2024 06:07
Letzte Änderung: 02 Okt 2024 06:07
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen