TU Darmstadt / ULB / TUbiblio

Garnet-Type Li₇La₃Zr₂O₁₂ Solid Electrolyte Thin Films Grown by CO₂-Laser Assisted CVD for All-Solid-State Batteries

Loho, Christoph ; Djenadic, Ruzica ; Bruns, Michael ; Clemens, Oliver ; Hahn, Horst (2024)
Garnet-Type Li₇La₃Zr₂O₁₂ Solid Electrolyte Thin Films Grown by CO₂-Laser Assisted CVD for All-Solid-State Batteries.
In: Journal of The Electrochemical Society, 2017, 164 (1)
doi: 10.26083/tuprints-00020392
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The detailed characterization of garnet-type Li-ion conducting Li₇La₃Zr₂O₁₂ (LLZO) solid electrolyte thin films grown by novel CO₂-laser assisted chemical vapor deposition (LA-CVD) is reported. A deposition process parameter study reveals that an optimal combination of deposition temperature and oxygen partial pressure is essential to obtain high quality tetragonal LLZO thin films. The polycrystalline tetragonal LLZO films grown on platinum have a dense and homogeneous microstructure and are free of cracks. A total lithium ion conductivity of 4.2·10⁻⁶ S·cm⁻¹ at room temperature, with an activation energy of 0.50 eV, is achieved. This is the highest total lithium ion conductivity value reported for tetragonal LLZO thin films so far, being about one order of magnitude higher than previously reported values for tetragonal LLZO thin films prepared by sputtering and pulsed laser deposition. The results of this study suggest that the tetragonal LLZO thin films grown by LA-CVD are applicable for the use in all-solid-state thin film lithium ion batteries.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Loho, Christoph ; Djenadic, Ruzica ; Bruns, Michael ; Clemens, Oliver ; Hahn, Horst
Art des Eintrags: Zweitveröffentlichung
Titel: Garnet-Type Li₇La₃Zr₂O₁₂ Solid Electrolyte Thin Films Grown by CO₂-Laser Assisted CVD for All-Solid-State Batteries
Sprache: Englisch
Publikationsjahr: 30 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2017
Ort der Erstveröffentlichung: Pennington
Verlag: The Electrochemical Society
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of The Electrochemical Society
Jahrgang/Volume einer Zeitschrift: 164
(Heft-)Nummer: 1
DOI: 10.26083/tuprints-00020392
URL / URN: https://tuprints.ulb.tu-darmstadt.de/20392
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The detailed characterization of garnet-type Li-ion conducting Li₇La₃Zr₂O₁₂ (LLZO) solid electrolyte thin films grown by novel CO₂-laser assisted chemical vapor deposition (LA-CVD) is reported. A deposition process parameter study reveals that an optimal combination of deposition temperature and oxygen partial pressure is essential to obtain high quality tetragonal LLZO thin films. The polycrystalline tetragonal LLZO films grown on platinum have a dense and homogeneous microstructure and are free of cracks. A total lithium ion conductivity of 4.2·10⁻⁶ S·cm⁻¹ at room temperature, with an activation energy of 0.50 eV, is achieved. This is the highest total lithium ion conductivity value reported for tetragonal LLZO thin films so far, being about one order of magnitude higher than previously reported values for tetragonal LLZO thin films prepared by sputtering and pulsed laser deposition. The results of this study suggest that the tetragonal LLZO thin films grown by LA-CVD are applicable for the use in all-solid-state thin film lithium ion batteries.

Freie Schlagworte: All-solid-state lithium ion battery, Chemical vapor deposition, Garnet-type Li₇La₃Zr₂O₁₂, Ionic conductivity, Solid electrolyte, Thin film
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-203928
Zusätzliche Informationen:

Focus Issue of Selected Papers from IMLB 2016 with Invited Papers Celebrating 25 Years of Lithium Ion Batteries

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 30 Sep 2024 08:09
Letzte Änderung: 04 Okt 2024 08:33
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen