Long, Teng ; Fortunato, Nuno M. ; Opahle, Ingo ; Zhang, Yixuan ; Samathrakis, Ilias ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin (2024)
Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures.
In: npj Computational Materials, 2021, 7 (1)
doi: 10.26083/tuprints-00023607
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine learning. Applying the deep learning techniques, we have developed a generative model, which can predict distinct stable crystal structures by optimizing the formation energy in the latent space. It is demonstrated that the optimization of physical properties can be integrated into the generative model as on-top screening or backward propagator, both with their own advantages. Applying the generative models on the binary Bi-Se system reveals that distinct crystal structures can be obtained covering the whole composition range, and the phases on the convex hull can be reproduced after the generated structures are fully relaxed to the equilibrium. The method can be extended to multicomponent systems for multi-objective optimization, which paves the way to achieve the inverse design of materials with optimal properties.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2024 |
Autor(en): | Long, Teng ; Fortunato, Nuno M. ; Opahle, Ingo ; Zhang, Yixuan ; Samathrakis, Ilias ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures |
Sprache: | Englisch |
Publikationsjahr: | 30 September 2024 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 10 Mai 2021 |
Ort der Erstveröffentlichung: | London |
Verlag: | Springer Nature |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | npj Computational Materials |
Jahrgang/Volume einer Zeitschrift: | 7 |
(Heft-)Nummer: | 1 |
Kollation: | 7 Seiten |
DOI: | 10.26083/tuprints-00023607 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/23607 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine learning. Applying the deep learning techniques, we have developed a generative model, which can predict distinct stable crystal structures by optimizing the formation energy in the latent space. It is demonstrated that the optimization of physical properties can be integrated into the generative model as on-top screening or backward propagator, both with their own advantages. Applying the generative models on the binary Bi-Se system reveals that distinct crystal structures can be obtained covering the whole composition range, and the phases on the convex hull can be reproduced after the generated structures are fully relaxed to the equilibrium. The method can be extended to multicomponent systems for multi-objective optimization, which paves the way to achieve the inverse design of materials with optimal properties. |
Freie Schlagworte: | Computational methods, Topological insulators |
ID-Nummer: | Artikel-ID: 66 |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-236071 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien |
Hinterlegungsdatum: | 30 Sep 2024 08:23 |
Letzte Änderung: | 04 Okt 2024 08:29 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures. (deposited 30 Sep 2024 08:23) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |