TU Darmstadt / ULB / TUbiblio

Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures

Long, Teng ; Fortunato, Nuno M. ; Opahle, Ingo ; Zhang, Yixuan ; Samathrakis, Ilias ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin (2024)
Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures.
In: npj Computational Materials, 2021, 7 (1)
doi: 10.26083/tuprints-00023607
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine learning. Applying the deep learning techniques, we have developed a generative model, which can predict distinct stable crystal structures by optimizing the formation energy in the latent space. It is demonstrated that the optimization of physical properties can be integrated into the generative model as on-top screening or backward propagator, both with their own advantages. Applying the generative models on the binary Bi-Se system reveals that distinct crystal structures can be obtained covering the whole composition range, and the phases on the convex hull can be reproduced after the generated structures are fully relaxed to the equilibrium. The method can be extended to multicomponent systems for multi-objective optimization, which paves the way to achieve the inverse design of materials with optimal properties.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Long, Teng ; Fortunato, Nuno M. ; Opahle, Ingo ; Zhang, Yixuan ; Samathrakis, Ilias ; Shen, Chen ; Gutfleisch, Oliver ; Zhang, Hongbin
Art des Eintrags: Zweitveröffentlichung
Titel: Constrained crystals deep convolutional generative adversarial network for the inverse design of crystal structures
Sprache: Englisch
Publikationsjahr: 30 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 10 Mai 2021
Ort der Erstveröffentlichung: London
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: npj Computational Materials
Jahrgang/Volume einer Zeitschrift: 7
(Heft-)Nummer: 1
Kollation: 7 Seiten
DOI: 10.26083/tuprints-00023607
URL / URN: https://tuprints.ulb.tu-darmstadt.de/23607
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Autonomous materials discovery with desired properties is one of the ultimate goals for materials science, and the current studies have been focusing mostly on high-throughput screening based on density functional theory calculations and forward modeling of physical properties using machine learning. Applying the deep learning techniques, we have developed a generative model, which can predict distinct stable crystal structures by optimizing the formation energy in the latent space. It is demonstrated that the optimization of physical properties can be integrated into the generative model as on-top screening or backward propagator, both with their own advantages. Applying the generative models on the binary Bi-Se system reveals that distinct crystal structures can be obtained covering the whole composition range, and the phases on the convex hull can be reproduced after the generated structures are fully relaxed to the equilibrium. The method can be extended to multicomponent systems for multi-objective optimization, which paves the way to achieve the inverse design of materials with optimal properties.

Freie Schlagworte: Computational methods, Topological insulators
ID-Nummer: Artikel-ID: 66
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-236071
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Theorie magnetischer Materialien
Hinterlegungsdatum: 30 Sep 2024 08:23
Letzte Änderung: 04 Okt 2024 08:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen