TU Darmstadt / ULB / TUbiblio

Load Balancing in Compute Clusters With Delayed Feedback

Tahir, Anam ; Alt, Bastian ; Rizk, Amr ; Koeppl, Heinz (2024)
Load Balancing in Compute Clusters With Delayed Feedback.
In: IEEE Transactions on Computers, 2023, 72 (6)
doi: 10.26083/tuprints-00026536
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Load balancing arises as a fundamental problem, underlying the dimensioning and operation of many computing and communication systems, such as job routing in data center clusters, multipath communication, Big Data and queueing systems. In essence, the decision-making agent maps each arriving job to one of the possibly heterogeneous servers while aiming at an optimization goal such as load balancing, low average delay or low loss rate. One main difficulty in finding optimal load balancing policies here is that the agent only partially observes the impact of its decisions, e.g., through the delayed acknowledgements of the served jobs. In this paper, we provide a partially observable (PO) model that captures the load balancing decisions in parallel buffered systems under limited information of delayed acknowledgements. We present a simulation model for this PO system to find a load balancing policy in real-time using a scalable Monte Carlo tree search algorithm. We numerically show that the resulting policy outperforms other limited information load balancing strategies such as variants of Join-the-Most-Observations and has comparable performance to full information strategies like: Join-the-Shortest-Queue, Join-the-Shortest-Queue(d) and Shortest-Expected-Delay. Finally, we show that our approach can optimise the real-time parallel processing by using network data provided by Kaggle.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Tahir, Anam ; Alt, Bastian ; Rizk, Amr ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Load Balancing in Compute Clusters With Delayed Feedback
Sprache: Englisch
Publikationsjahr: 30 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2023
Ort der Erstveröffentlichung: [Erscheinungsort nicht ermittelbar]
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Computers
Jahrgang/Volume einer Zeitschrift: 72
(Heft-)Nummer: 6
Kollation: 13 Seiten
DOI: 10.26083/tuprints-00026536
URL / URN: https://tuprints.ulb.tu-darmstadt.de/26536
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Load balancing arises as a fundamental problem, underlying the dimensioning and operation of many computing and communication systems, such as job routing in data center clusters, multipath communication, Big Data and queueing systems. In essence, the decision-making agent maps each arriving job to one of the possibly heterogeneous servers while aiming at an optimization goal such as load balancing, low average delay or low loss rate. One main difficulty in finding optimal load balancing policies here is that the agent only partially observes the impact of its decisions, e.g., through the delayed acknowledgements of the served jobs. In this paper, we provide a partially observable (PO) model that captures the load balancing decisions in parallel buffered systems under limited information of delayed acknowledgements. We present a simulation model for this PO system to find a load balancing policy in real-time using a scalable Monte Carlo tree search algorithm. We numerically show that the resulting policy outperforms other limited information load balancing strategies such as variants of Join-the-Most-Observations and has comparable performance to full information strategies like: Join-the-Shortest-Queue, Join-the-Shortest-Queue(d) and Shortest-Expected-Delay. Finally, we show that our approach can optimise the real-time parallel processing by using network data provided by Kaggle.

Freie Schlagworte: Parallel systems, load balancing, partial observability
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-265367
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 621.3 Elektrotechnik, Elektronik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 30 Sep 2024 09:48
Letzte Änderung: 11 Okt 2024 14:41
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen