TU Darmstadt / ULB / TUbiblio

Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles

Nadarajah, Ruksan ; Landers, Joachim ; Salamon, Soma ; Koch, David ; Tahir, Shabbir ; Doñate-Buendía, Carlos ; Zingsem, Benjamin ; Dunin-Borkowski, Rafal E. ; Donner, Wolfgang ; Farle, Michael ; Wende, Heiko ; Gökce, Bilal (2021)
Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles.
In: Scientific Reports, 11 (1)
doi: 10.1038/s41598-021-92760-5
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

The development of magnetocaloric materials represents an approach to enable efficient and environmentally friendly refrigeration. It is envisioned as a key technology to reduce CO₂ emissions of air conditioning and cooling systems. Fe-Rh has been shown to be one of the best-suited materials in terms of heat exchange per material volume. However, the Fe-Rh magnetocaloric response depends on its composition. Hence, the adaptation of material processing routes that preserve the Fe-Rh magnetocaloric response in the generated structures is a fundamental step towards the industrial development of this cooling technology. To address this challenge, the temperature-dependent properties of laser synthesized Fe-Rh nanoparticles and the laser printing of Fe-Rh nanoparticle inks are studied to generate 2D magnetocaloric structures that are potentially interesting for applications such as waste heat management of compact electrical appliances or thermal diodes, switches, and printable magnetocaloric media. The magnetization and temperature dependence of the ink’s γ-FeRh to B2-FeRh magnetic transition is analyzed throughout the complete process, finding a linear increase of the magnetization M (0.8 T, 300 K) up to 96 Am²/kg with ca. 90% of the γ-FeRh being transformed permanently into the B2-phase. In 2D structures, magnetization values of M (0.8 T, 300 K) ≈ 11 Am²/kg could be reached by laser sintering, yielding partial conversion to the B2-phase equivalent to long-time heating temperature of app. 600 K, via this treatment. Thus, the proposed procedure constitutes a robust route to achieve the generation of magnetocaloric structures.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Nadarajah, Ruksan ; Landers, Joachim ; Salamon, Soma ; Koch, David ; Tahir, Shabbir ; Doñate-Buendía, Carlos ; Zingsem, Benjamin ; Dunin-Borkowski, Rafal E. ; Donner, Wolfgang ; Farle, Michael ; Wende, Heiko ; Gökce, Bilal
Art des Eintrags: Bibliographie
Titel: Towards laser printing of magnetocaloric structures by inducing a magnetic phase transition in iron-rhodium nanoparticles
Sprache: Englisch
Publikationsjahr: 2 Juli 2021
Ort: London
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Scientific Reports
Jahrgang/Volume einer Zeitschrift: 11
(Heft-)Nummer: 1
Kollation: 12 Seiten
DOI: 10.1038/s41598-021-92760-5
Zugehörige Links:
Kurzbeschreibung (Abstract):

The development of magnetocaloric materials represents an approach to enable efficient and environmentally friendly refrigeration. It is envisioned as a key technology to reduce CO₂ emissions of air conditioning and cooling systems. Fe-Rh has been shown to be one of the best-suited materials in terms of heat exchange per material volume. However, the Fe-Rh magnetocaloric response depends on its composition. Hence, the adaptation of material processing routes that preserve the Fe-Rh magnetocaloric response in the generated structures is a fundamental step towards the industrial development of this cooling technology. To address this challenge, the temperature-dependent properties of laser synthesized Fe-Rh nanoparticles and the laser printing of Fe-Rh nanoparticle inks are studied to generate 2D magnetocaloric structures that are potentially interesting for applications such as waste heat management of compact electrical appliances or thermal diodes, switches, and printable magnetocaloric media. The magnetization and temperature dependence of the ink’s γ-FeRh to B2-FeRh magnetic transition is analyzed throughout the complete process, finding a linear increase of the magnetization M (0.8 T, 300 K) up to 96 Am²/kg with ca. 90% of the γ-FeRh being transformed permanently into the B2-phase. In 2D structures, magnetization values of M (0.8 T, 300 K) ≈ 11 Am²/kg could be reached by laser sintering, yielding partial conversion to the B2-phase equivalent to long-time heating temperature of app. 600 K, via this treatment. Thus, the proposed procedure constitutes a robust route to achieve the generation of magnetocaloric structures.

Freie Schlagworte: Lasers, LEDs and light sources, Magnetic properties and materials, Nanoscale materials
ID-Nummer: Artikel-ID: 13719
Zusätzliche Informationen:

A Publisher Correction to this article was published on 27 August 2021

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Strukturforschung
Hinterlegungsdatum: 26 Sep 2024 07:24
Letzte Änderung: 26 Sep 2024 07:24
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen