TU Darmstadt / ULB / TUbiblio

A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents

Bharadwaj, Swaminath ; Nayar, Divya ; Dalgicdir, Cahit ; Vegt, Nico F. A. van der (2024)
A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents.
In: Communications Chemistry, 2020, 3 (1)
doi: 10.26083/tuprints-00024038
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The coil–globule transition of aqueous polymers is of profound significance in understanding the structure and function of responsive soft matter. In particular, the remarkable effect of amphiphilic cosolvents (e.g., alcohols) that leads to both swelling and collapse of stimuli-responsive polymers has been hotly debated in the literature, often with contradictory mechanisms proposed. Using molecular dynamics simulations, we herein demonstrate that alcohols reduce the free energy cost of creating a repulsive polymer–solvent interface via a surfactant-like mechanism which surprisingly drives polymer collapse at low alcohol concentrations. This hitherto neglected role of interfacial solvation thermodynamics is common to all coil–globule transitions, and rationalizes the experimentally observed effects of higher alcohols and polymer molecular weight on the coil-to-globule transition of thermoresponsive polymers. Polymer–(co)solvent attractive interactions reinforce or compensate this mechanism and it is this interplay which drives polymer swelling or collapse.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Bharadwaj, Swaminath ; Nayar, Divya ; Dalgicdir, Cahit ; Vegt, Nico F. A. van der
Art des Eintrags: Zweitveröffentlichung
Titel: A cosolvent surfactant mechanism affects polymer collapse in miscible good solvents
Sprache: Englisch
Publikationsjahr: 25 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 11 November 2020
Ort der Erstveröffentlichung: London
Verlag: Springer Nature
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Communications Chemistry
Jahrgang/Volume einer Zeitschrift: 3
(Heft-)Nummer: 1
Kollation: 7 Seiten
DOI: 10.26083/tuprints-00024038
URL / URN: https://tuprints.ulb.tu-darmstadt.de/24038
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The coil–globule transition of aqueous polymers is of profound significance in understanding the structure and function of responsive soft matter. In particular, the remarkable effect of amphiphilic cosolvents (e.g., alcohols) that leads to both swelling and collapse of stimuli-responsive polymers has been hotly debated in the literature, often with contradictory mechanisms proposed. Using molecular dynamics simulations, we herein demonstrate that alcohols reduce the free energy cost of creating a repulsive polymer–solvent interface via a surfactant-like mechanism which surprisingly drives polymer collapse at low alcohol concentrations. This hitherto neglected role of interfacial solvation thermodynamics is common to all coil–globule transitions, and rationalizes the experimentally observed effects of higher alcohols and polymer molecular weight on the coil-to-globule transition of thermoresponsive polymers. Polymer–(co)solvent attractive interactions reinforce or compensate this mechanism and it is this interplay which drives polymer swelling or collapse.

Freie Schlagworte: Chemical physics, Polymers
ID-Nummer: Artikel-ID: 165
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-240381
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): 07 Fachbereich Chemie
07 Fachbereich Chemie > Eduard Zintl-Institut
07 Fachbereich Chemie > Eduard Zintl-Institut > Fachgebiet Physikalische Chemie
Hinterlegungsdatum: 25 Sep 2024 11:29
Letzte Änderung: 26 Sep 2024 07:34
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen