TU Darmstadt / ULB / TUbiblio

A generalized Anderson–Darling test for the goodness-of-fit evaluation of the fracture strain distribution of acrylic glass

Berlinger, Marcel ; Kolling, Stefan ; Schneider, Jens (2021)
A generalized Anderson–Darling test for the goodness-of-fit evaluation of the fracture strain distribution of acrylic glass.
In: Glass Structures & Engineering, 6 (2)
doi: 10.1007/s40940-021-00149-7
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Acrylic glasses, as well as mineral glasses, exhibit a high variability in tensile strength. To cope with this uncertainty factor for the dimensioning of structural parts, modeling of the stress-strain behavior and a proper characterization of the varying fracture stress or strain are required. For the latter, this work presents an experimental and mathematical methodology. Fracture strains from 50 quasi-static tensile tests, locally analyzed using digital image correlation, form the sample. For the assignment of an occurrence probability to each experiment, an evaluation of existing probability estimators is conducted, concerning their ability to fit selected probability distribution functions. Important goodness-of-fit tests are introduced and assessed critically. Based on the popular Anderson-Darling test, a generalized form is proposed that allows a free, hitherto not possible, choice of the probability estimator. To approach the fracture strains population, the combination of probability estimator and distribution function that best reproduces the experimental data is determined, and its characteristic progression is discussed with the aid of fractographic analyses.

Typ des Eintrags: Artikel
Erschienen: 2021
Autor(en): Berlinger, Marcel ; Kolling, Stefan ; Schneider, Jens
Art des Eintrags: Bibliographie
Titel: A generalized Anderson–Darling test for the goodness-of-fit evaluation of the fracture strain distribution of acrylic glass
Sprache: Englisch
Publikationsjahr: 2021
Ort: [Cham]
Verlag: Springer International Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Glass Structures & Engineering
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 2
DOI: 10.1007/s40940-021-00149-7
Zugehörige Links:
Kurzbeschreibung (Abstract):

Acrylic glasses, as well as mineral glasses, exhibit a high variability in tensile strength. To cope with this uncertainty factor for the dimensioning of structural parts, modeling of the stress-strain behavior and a proper characterization of the varying fracture stress or strain are required. For the latter, this work presents an experimental and mathematical methodology. Fracture strains from 50 quasi-static tensile tests, locally analyzed using digital image correlation, form the sample. For the assignment of an occurrence probability to each experiment, an evaluation of existing probability estimators is conducted, concerning their ability to fit selected probability distribution functions. Important goodness-of-fit tests are introduced and assessed critically. Based on the popular Anderson-Darling test, a generalized form is proposed that allows a free, hitherto not possible, choice of the probability estimator. To approach the fracture strains population, the combination of probability estimator and distribution function that best reproduces the experimental data is determined, and its characteristic progression is discussed with the aid of fractographic analyses.

Freie Schlagworte: Acrylic glass, Anderson-Darling test, Fracture strain, Goodness-of-fit, Probability estimator, Weibull distribution
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 624 Ingenieurbau und Umwelttechnik
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut für Statik und Konstruktion
Hinterlegungsdatum: 26 Sep 2024 07:00
Letzte Änderung: 26 Sep 2024 07:00
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen