TU Darmstadt / ULB / TUbiblio

Exploiting Generative Diffusion Prior With Latent Low-Rank Regularization for Image Inpainting

Zou, Zhentao ; Chen, Lin ; Jiang, Xue ; Zoubir, Abdelhak. M. (2024)
Exploiting Generative Diffusion Prior With Latent Low-Rank Regularization for Image Inpainting.
In: IEEE Signal Processing Letters, 31
doi: 10.1109/LSP.2024.3453665
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Generative diffusion models have recently shown impressive results in image restoration. However, the predicted noise from existing diffusion-based methods may be inaccurate, especially when the noise amplitude is small, thereby leading to sub-optimal results. In this letter, an unsupervised diffusion model with latent low-rank regularization is proposed to alleviate this challenge. In particular, we first create a latent low-rank space using self-supervised learning for each degraded images, from which we derive corresponding latent low-rank regularization. This regularization, combining with observed prior information and smoothness regularization, guides the reserve sampling process, resulting in the generation of high-quality images with fine-grained textures and fewer artifacts. In addition, by utilizing the pre-trained unconditional diffusion model, the proposed model reconstructs the missing pixels in a zero-shot manner, which does not need any reference images for additional training. Extensive experimental results demonstrate that our proposed method is superior to the self-supervised tensor completion methods and representative diffusion model-based image restoration methods.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Zou, Zhentao ; Chen, Lin ; Jiang, Xue ; Zoubir, Abdelhak. M.
Art des Eintrags: Bibliographie
Titel: Exploiting Generative Diffusion Prior With Latent Low-Rank Regularization for Image Inpainting
Sprache: Englisch
Publikationsjahr: 3 September 2024
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Signal Processing Letters
Jahrgang/Volume einer Zeitschrift: 31
DOI: 10.1109/LSP.2024.3453665
Kurzbeschreibung (Abstract):

Generative diffusion models have recently shown impressive results in image restoration. However, the predicted noise from existing diffusion-based methods may be inaccurate, especially when the noise amplitude is small, thereby leading to sub-optimal results. In this letter, an unsupervised diffusion model with latent low-rank regularization is proposed to alleviate this challenge. In particular, we first create a latent low-rank space using self-supervised learning for each degraded images, from which we derive corresponding latent low-rank regularization. This regularization, combining with observed prior information and smoothness regularization, guides the reserve sampling process, resulting in the generation of high-quality images with fine-grained textures and fewer artifacts. In addition, by utilizing the pre-trained unconditional diffusion model, the proposed model reconstructs the missing pixels in a zero-shot manner, which does not need any reference images for additional training. Extensive experimental results demonstrate that our proposed method is superior to the self-supervised tensor completion methods and representative diffusion model-based image restoration methods.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Signalverarbeitung
Hinterlegungsdatum: 27 Sep 2024 09:39
Letzte Änderung: 27 Sep 2024 09:39
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen