TU Darmstadt / ULB / TUbiblio

Digital Quantum Simulation of Scalar Yukawa Coupling

Kaldenbach, Thierry N. ; Heller, Matthias ; Alber, Gernot ; Stojanović, Vladimir M. (2024)
Digital Quantum Simulation of Scalar Yukawa Coupling.
In: Quantum Reports, 6 (3)
doi: 10.3390/quantum6030024
Artikel, Bibliographie

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Motivated by the revitalized interest in the digital simulation of medium- and high-energy physics phenomena, we investigate the dynamics following a Yukawa interaction quench on IBM Q. Adopting the zero-dimensional version of the scalar Yukawa coupling model as our point of departure, we design low-depth quantum circuits, emulating its dynamics with up to three bosons. In the one-boson case, we demonstrate circuit compression, i.e., a constant-depth circuit containing only two controlled-NOT (CNOT) gates. In the more complex three-boson case, we design a circuit in which one Trotter step entails eight CNOTs. Using an analogy with the traveling salesman problem, we also provide a CNOT cost estimate for higher boson number truncations. Based on these circuits, we quantify the system dynamics by evaluating the expected boson number at an arbitrary time after the quench and the survival probability of the initial vacuum state (the Loschmidt echo). We also utilize these circuits to drive adiabatic transitions and compute the energies of the ground- and first-excited states of the considered model. Finally, through error mitigation, i.e., zero-noise extrapolation, we demonstrate the good agreement of our results with a numerically exact classical benchmark.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Kaldenbach, Thierry N. ; Heller, Matthias ; Alber, Gernot ; Stojanović, Vladimir M.
Art des Eintrags: Bibliographie
Titel: Digital Quantum Simulation of Scalar Yukawa Coupling
Sprache: Englisch
Publikationsjahr: September 2024
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Quantum Reports
Jahrgang/Volume einer Zeitschrift: 6
(Heft-)Nummer: 3
DOI: 10.3390/quantum6030024
Zugehörige Links:
Kurzbeschreibung (Abstract):

Motivated by the revitalized interest in the digital simulation of medium- and high-energy physics phenomena, we investigate the dynamics following a Yukawa interaction quench on IBM Q. Adopting the zero-dimensional version of the scalar Yukawa coupling model as our point of departure, we design low-depth quantum circuits, emulating its dynamics with up to three bosons. In the one-boson case, we demonstrate circuit compression, i.e., a constant-depth circuit containing only two controlled-NOT (CNOT) gates. In the more complex three-boson case, we design a circuit in which one Trotter step entails eight CNOTs. Using an analogy with the traveling salesman problem, we also provide a CNOT cost estimate for higher boson number truncations. Based on these circuits, we quantify the system dynamics by evaluating the expected boson number at an arbitrary time after the quench and the survival probability of the initial vacuum state (the Loschmidt echo). We also utilize these circuits to drive adiabatic transitions and compute the energies of the ground- and first-excited states of the considered model. Finally, through error mitigation, i.e., zero-noise extrapolation, we demonstrate the good agreement of our results with a numerically exact classical benchmark.

Freie Schlagworte: digital quantum simulation, boson–fermion coupling, low-depth quantum circuits
Zusätzliche Informationen:

This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
20 Fachbereich Informatik > Fraunhofer IGD
05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 19 Sep 2024 07:15
Letzte Änderung: 19 Sep 2024 07:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen