TU Darmstadt / ULB / TUbiblio

Viscosity modeling for blood and blood analog fluids in narrow gap and high Reynolds numbers flows

Knüppel, Finn ; Malchow, Sasha ; Sun, Ang ; Hussong, Jeanette ; Hartmann, Alexander ; Wurm, Frank-Hendrik ; Torner, Benjamin (2024)
Viscosity modeling for blood and blood analog fluids in narrow gap and high Reynolds numbers flows.
In: Micromachines, 15 (6)
doi: 10.3390/mi15060793
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

For the optimization of ventricular assist devices (VADs), flow simulations are crucial. Typically, these simulations assume single-phase flow to represent blood flow. However, blood consists of plasma and blood cells, making it a multiphase flow. Cell migration in such flows leads to a heterogeneous cell distribution, significantly impacting flow dynamics, especially in narrow gaps of less than 300 μm found in VADs. In these areas, cells migrate away from the walls, forming a cell-free layer, a phenomenon not usually considered in current VAD simulations. This paper addresses this gap by introducing a viscosity model that accounts for cell migration in microchannels under VAD-relevant conditions. The model is based on local particle distributions measured in a microchannels with a blood analog fluid. We developed a local viscosity distribution for flows with particles/cells and a cell-free layer, applicable to both blood and analog fluids, with particle volume fractions of up to 5%, gap heights of 150 μm, and Reynolds numbers around 100. The model was validated by comparing simulation results with experimental data of blood and blood analog fluid flow on wall shear stresses and pressure losses, showing strong agreement. This model improves the accuracy of simulations by considering local viscosity changes rather than assuming a single-phase fluid. Future developments will extend the model to physiological volume fractions up to 40%.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Knüppel, Finn ; Malchow, Sasha ; Sun, Ang ; Hussong, Jeanette ; Hartmann, Alexander ; Wurm, Frank-Hendrik ; Torner, Benjamin
Art des Eintrags: Bibliographie
Titel: Viscosity modeling for blood and blood analog fluids in narrow gap and high Reynolds numbers flows
Sprache: Englisch
Publikationsjahr: Juni 2024
Ort: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Micromachines
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 6
Kollation: 15 Seiten
DOI: 10.3390/mi15060793
Zugehörige Links:
Kurzbeschreibung (Abstract):

For the optimization of ventricular assist devices (VADs), flow simulations are crucial. Typically, these simulations assume single-phase flow to represent blood flow. However, blood consists of plasma and blood cells, making it a multiphase flow. Cell migration in such flows leads to a heterogeneous cell distribution, significantly impacting flow dynamics, especially in narrow gaps of less than 300 μm found in VADs. In these areas, cells migrate away from the walls, forming a cell-free layer, a phenomenon not usually considered in current VAD simulations. This paper addresses this gap by introducing a viscosity model that accounts for cell migration in microchannels under VAD-relevant conditions. The model is based on local particle distributions measured in a microchannels with a blood analog fluid. We developed a local viscosity distribution for flows with particles/cells and a cell-free layer, applicable to both blood and analog fluids, with particle volume fractions of up to 5%, gap heights of 150 μm, and Reynolds numbers around 100. The model was validated by comparing simulation results with experimental data of blood and blood analog fluid flow on wall shear stresses and pressure losses, showing strong agreement. This model improves the accuracy of simulations by considering local viscosity changes rather than assuming a single-phase fluid. Future developments will extend the model to physiological volume fractions up to 40%.

Freie Schlagworte: cell-free layer, Fåhræus–Lindqvist effect, blood, particle-laden blood analog fluid, viscosity modeling, CFD simulations
ID-Nummer: Artikel-ID: 793
Zusätzliche Informationen:

This article belongs to the Special Issue Blood Flow in Microfluidic Medical Devices

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Strömungslehre und Aerodynamik (SLA)
Hinterlegungsdatum: 19 Sep 2024 05:41
Letzte Änderung: 19 Sep 2024 12:14
PPN: 521598907
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen