TU Darmstadt / ULB / TUbiblio

Viscosity Modeling for Blood and Blood Analog Fluids in Narrow Gap and High Reynolds Numbers Flows

Knüppel, Finn ; Malchow, Sasha ; Sun, Ang ; Hussong, Jeanette ; Hartmann, Alexander ; Wurm, Frank-Hendrik ; Torner, Benjamin (2024)
Viscosity Modeling for Blood and Blood Analog Fluids in Narrow Gap and High Reynolds Numbers Flows.
In: Micromachines, 2024, 15 (6)
doi: 10.26083/tuprints-00027826
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

For the optimization of ventricular assist devices (VADs), flow simulations are crucial. Typically, these simulations assume single-phase flow to represent blood flow. However, blood consists of plasma and blood cells, making it a multiphase flow. Cell migration in such flows leads to a heterogeneous cell distribution, significantly impacting flow dynamics, especially in narrow gaps of less than 300 μm found in VADs. In these areas, cells migrate away from the walls, forming a cell-free layer, a phenomenon not usually considered in current VAD simulations. This paper addresses this gap by introducing a viscosity model that accounts for cell migration in microchannels under VAD-relevant conditions. The model is based on local particle distributions measured in a microchannels with a blood analog fluid. We developed a local viscosity distribution for flows with particles/cells and a cell-free layer, applicable to both blood and analog fluids, with particle volume fractions of up to 5%, gap heights of 150 μm, and Reynolds numbers around 100. The model was validated by comparing simulation results with experimental data of blood and blood analog fluid flow on wall shear stresses and pressure losses, showing strong agreement. This model improves the accuracy of simulations by considering local viscosity changes rather than assuming a single-phase fluid. Future developments will extend the model to physiological volume fractions up to 40%.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Knüppel, Finn ; Malchow, Sasha ; Sun, Ang ; Hussong, Jeanette ; Hartmann, Alexander ; Wurm, Frank-Hendrik ; Torner, Benjamin
Art des Eintrags: Zweitveröffentlichung
Titel: Viscosity Modeling for Blood and Blood Analog Fluids in Narrow Gap and High Reynolds Numbers Flows
Sprache: Englisch
Publikationsjahr: 18 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: Juni 2024
Ort der Erstveröffentlichung: Basel
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Micromachines
Jahrgang/Volume einer Zeitschrift: 15
(Heft-)Nummer: 6
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00027826
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27826
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

For the optimization of ventricular assist devices (VADs), flow simulations are crucial. Typically, these simulations assume single-phase flow to represent blood flow. However, blood consists of plasma and blood cells, making it a multiphase flow. Cell migration in such flows leads to a heterogeneous cell distribution, significantly impacting flow dynamics, especially in narrow gaps of less than 300 μm found in VADs. In these areas, cells migrate away from the walls, forming a cell-free layer, a phenomenon not usually considered in current VAD simulations. This paper addresses this gap by introducing a viscosity model that accounts for cell migration in microchannels under VAD-relevant conditions. The model is based on local particle distributions measured in a microchannels with a blood analog fluid. We developed a local viscosity distribution for flows with particles/cells and a cell-free layer, applicable to both blood and analog fluids, with particle volume fractions of up to 5%, gap heights of 150 μm, and Reynolds numbers around 100. The model was validated by comparing simulation results with experimental data of blood and blood analog fluid flow on wall shear stresses and pressure losses, showing strong agreement. This model improves the accuracy of simulations by considering local viscosity changes rather than assuming a single-phase fluid. Future developments will extend the model to physiological volume fractions up to 40%.

Freie Schlagworte: cell-free layer, Fåhræus–Lindqvist effect, blood, particle-laden blood analog fluid, viscosity modeling, CFD simulations
ID-Nummer: Artikel-ID: 793
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-278260
Zusätzliche Informationen:

This article belongs to the Special Issue Blood Flow in Microfluidic Medical Devices

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Strömungslehre und Aerodynamik (SLA)
Hinterlegungsdatum: 18 Sep 2024 11:46
Letzte Änderung: 19 Sep 2024 05:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen