TU Darmstadt / ULB / TUbiblio

High‐Scale 3D‐Bioprinting Platform for the Automated Production of Vascularized Organs‐on‐a‐Chip

Fritschen, Anna ; Lindner, Nils ; Scholpp, Sebastian ; Richthof, Philipp ; Dietz, Jonas ; Linke, Philipp ; Guttenberg, Zeno ; Blaeser, Andreas (2024)
High‐Scale 3D‐Bioprinting Platform for the Automated Production of Vascularized Organs‐on‐a‐Chip.
In: Advanced Healthcare Materials, 2024, 13 (17)
doi: 10.26083/tuprints-00027693
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

3D bioprinting possesses the potential to revolutionize contemporary methodologies for fabricating tissue models employed in pharmaceutical research and experimental investigations. This is enhanced by combining bioprinting with advanced organs‐on‐a‐chip (OOCs), which includes a complex arrangement of multiple cell types representing organ‐specific cells, connective tissue, and vasculature. However, both OOCs and bioprinting so far demand a high degree of manual intervention, thereby impeding efficiency and inhibiting scalability to meet technological requirements. Through the combination of drop‐on‐demand bioprinting with robotic handling of microfluidic chips, a print procedure is achieved that is proficient in managing three distinct tissue models on a chip within only a minute, as well as capable of consecutively processing numerous OOCs without manual intervention. This process rests upon the development of a post‐printing sealable microfluidic chip, that is compatible with different types of 3D‐bioprinters and easily connected to a perfusion system. The capabilities of the automized bioprint process are showcased through the creation of a multicellular and vascularized liver carcinoma model on the chip. The process achieves full vascularization and stable microvascular network formation over 14 days of culture time, with pronounced spheroidal cell growth and albumin secretion of HepG2 serving as a representative cell model.

Typ des Eintrags: Artikel
Erschienen: 2024
Autor(en): Fritschen, Anna ; Lindner, Nils ; Scholpp, Sebastian ; Richthof, Philipp ; Dietz, Jonas ; Linke, Philipp ; Guttenberg, Zeno ; Blaeser, Andreas
Art des Eintrags: Zweitveröffentlichung
Titel: High‐Scale 3D‐Bioprinting Platform for the Automated Production of Vascularized Organs‐on‐a‐Chip
Sprache: Englisch
Publikationsjahr: 16 September 2024
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 5 Juli 2024
Ort der Erstveröffentlichung: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Healthcare Materials
Jahrgang/Volume einer Zeitschrift: 13
(Heft-)Nummer: 17
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00027693
URL / URN: https://tuprints.ulb.tu-darmstadt.de/27693
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

3D bioprinting possesses the potential to revolutionize contemporary methodologies for fabricating tissue models employed in pharmaceutical research and experimental investigations. This is enhanced by combining bioprinting with advanced organs‐on‐a‐chip (OOCs), which includes a complex arrangement of multiple cell types representing organ‐specific cells, connective tissue, and vasculature. However, both OOCs and bioprinting so far demand a high degree of manual intervention, thereby impeding efficiency and inhibiting scalability to meet technological requirements. Through the combination of drop‐on‐demand bioprinting with robotic handling of microfluidic chips, a print procedure is achieved that is proficient in managing three distinct tissue models on a chip within only a minute, as well as capable of consecutively processing numerous OOCs without manual intervention. This process rests upon the development of a post‐printing sealable microfluidic chip, that is compatible with different types of 3D‐bioprinters and easily connected to a perfusion system. The capabilities of the automized bioprint process are showcased through the creation of a multicellular and vascularized liver carcinoma model on the chip. The process achieves full vascularization and stable microvascular network formation over 14 days of culture time, with pronounced spheroidal cell growth and albumin secretion of HepG2 serving as a representative cell model.

Freie Schlagworte: bioprinting, organ‐on‐a‐chip, robotics, vascularization
ID-Nummer: Artikel-ID: 2304028
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-276936
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD)
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) > Biomedizinische Drucktechnologie (BMT)
Interdisziplinäre Forschungsprojekte
Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology
Hinterlegungsdatum: 16 Sep 2024 11:34
Letzte Änderung: 17 Sep 2024 06:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen